Fully-Nonlinear Wave-Current-Body Interaction Analysis by a Harmonic Polynomial Cell Method

被引:33
|
作者
Shao, Yan-Lin [1 ,2 ]
Faltinsen, Odd M. [2 ]
机构
[1] DNV GL, Hydrodynam & Stabil, N-1322 Hovik, Norway
[2] Norwegian Univ Sci & Technol NTNU, Dept Marine Technol, N-7491 Trondheim, Norway
来源
JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME | 2014年 / 136卷 / 03期
关键词
D O I
10.1115/1.4026960
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A new numerical 2D cell method has been proposed by the authors, based on representing the velocity potential in each cell by harmonic polynomials. The method was named the harmonic polynomial cell (HPC) method. The method was later extended to 3D to study potential-flow problems in marine hydrodynamics. With the considered number of unknowns that are typical in marine hydrodynamics, the comparisons with some existing boundary element-based methods, including the fast multipole accelerated boundary element methods, showed that the HPC method is very competitive in terms of both accuracy and efficiency. The HPC method has also been applied to study fully-nonlinear wave-body interactions; for example, sloshing in tanks, nonlinear waves over different sea-bottom topographies, and nonlinear wave diffraction by a bottom-mounted vertical circular cylinder. However, no current effects were considered. In this paper, we study the fully-nonlinear time-domain wave-body interaction considering the current effects. In order to validate and verify the method, a bottom-mounted vertical circular cylinder, which has been studied extensively in the literature, will first be examined. Comparisons are made with the published numerical results and experimental results. As a further application, the HPC method will be used to study multiple bottom-mounted cylinders. An example of the wave diffraction of two bottom-mounted cylinders is also presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] FULLY-NONLINEAR WAVE-CURRENT-BODY INTERACTION ANALYSIS BY A HARMONIC POLYNOMIAL CELL (HPC) METHOD
    Shao, Yan-Lin
    Faltinsen, Odd M.
    PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 9, 2013,
  • [2] Three-dimensional numerical wave tank simulations on fully nonlinear wave-current-body interactions
    Park J.-C.
    Kim M.-H.
    Miyata H.
    Journal of Marine Science and Technology, 2001, 6 (2) : 70 - 82
  • [3] Fully nonlinear wave-current-body interactions by a 3D viscous numerical wave tank
    Park, JC
    Kim, MH
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 1998, : 264 - 271
  • [4] An adaptive harmonic polynomial cell method for three-dimensional fully nonlinear wave-structure interaction with immersed boundaries
    Tong, Chao
    Shao, Yanlin
    Bingham, Harry B.
    Hanssen, Finn-Christian W.
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [5] Time-domain Simulation of Wave-Current-Body Interaction
    Teng, Bin
    Liu, Zhen
    Ning, De-zhi
    PROCEEDINGS OF THE EIGHTH (2008) ISOPE PACIFIC/ASIA OFFSHORE MECHANICS SYMPOSIUM: PACOMS-2008, 2008, : 235 - 240
  • [6] A fully-nonlinear computational method for wave propagation over topography
    Kennedy, AB
    Fenton, JD
    COASTAL ENGINEERING, 1997, 32 (2-3) : 137 - 161
  • [7] Wave-current-body interaction by a time-domain high-order boundary element method
    Kim, DJ
    Kim, MH
    PROCEEDINGS OF THE SEVENTH (1997) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 1997, 1997, : 107 - 115
  • [8] A NUMERICAL SCHEME FOR CALCULATING THE MJ TERMS IN WAVE-CURRENT-BODY INTERACTION PROBLEM
    WU, GX
    APPLIED OCEAN RESEARCH, 1991, 13 (06) : 317 - 319
  • [9] The nonlinear wave and current effects on fixed and floating bodies by a three-dimensional fully-nonlinear numerical wave tank
    Kim, Sung-Jae
    Kim, MooHyun
    OCEAN ENGINEERING, 2022, 245
  • [10] A high-order finite difference method with immersed-boundary treatment for fully-nonlinear wave-structure interaction
    Xu, Yan
    Bingham, Harry B.
    Shao, Yanlin
    APPLIED OCEAN RESEARCH, 2023, 134