Suboptimality bounds for linear quadratic problems in hybrid linear systems

被引:0
|
作者
Kouhi, Yashar [1 ]
Bajcinca, Naim [1 ]
Sanfelice, Ricardo G. [2 ]
机构
[1] Tech Univ Berlin, Control Syst Grp, Einsteinufer 17,Sekr EN 11, D-10587 Berlin, Germany
[2] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
来源
2013 EUROPEAN CONTROL CONFERENCE (ECC) | 2013年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method for computation of lower and upper bounds for the linear quadratic cost function associated to a class of hybrid linear systems is proposed. The optimization problem involves state space constraints and switches between the continuous and discrete dynamics at fixed time instances on the boundaries of the flow and jump sets. Our approach computes a quadratic suboptimal cost parameterized by initial and end state variables of all time intervals. Then, the unknown parameters are determined via solving constrained quadratic programming problems.
引用
收藏
页码:2663 / 2668
页数:6
相关论文
共 50 条
  • [1] BOUNDS ON SUBOPTIMALITY IN CONTROL OF LINEAR DYNAMIC-SYSTEMS
    BAILEY, FN
    RAMAPRIYAN, HK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (05) : 532 - 534
  • [2] A Suboptimality Approach to Distributed Linear Quadratic Optimal Control
    Jiao, Junjie
    Trentelman, Harry L.
    Camlibel, M. Kanat
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) : 1218 - 1225
  • [3] Quadratic optimal control problems for hybrid linear autonomous systems with state jumps
    Xu, XP
    Antsaklis, PJ
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3393 - 3398
  • [4] The linear quadratic regulator for periodic hybrid systems
    Possieri, Corrado
    Sassano, Mario
    Galeani, Sergio
    Teel, Andrew R.
    AUTOMATICA, 2020, 113 (113)
  • [5] Regret Lower Bounds for Learning Linear Quadratic Gaussian Systems
    Ziemann, Ingvar
    Sandberg, Henrik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (01) : 159 - 173
  • [6] Linear quadratic problems
    CONTROL THEORY IN PHYSICS AND OTHER FIELDS OF SCIENCE: CONCEPTS, TOOLS AND APPLICATIONS, 2006, 215 : 61 - 92
  • [7] Improved Regret Bounds for Thompson Sampling in Linear Quadratic Control Problems
    Abeille, Marc
    Lazaric, Alessandro
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [8] On the method of dynamic programming for linear-quadratic problems of optimal control in hybrid systems
    Azmyakov, V. V.
    Galvan-Guerra, R.
    Polyakov, A. E.
    AUTOMATION AND REMOTE CONTROL, 2009, 70 (05) : 787 - 799
  • [9] On the method of dynamic programming for linear-quadratic problems of optimal control in hybrid systems
    V. V. Azmyakov
    R. Galvan-Guerra
    A. E. Polyakov
    Automation and Remote Control, 2009, 70 : 787 - 799
  • [10] Walsh functions in linear-quadratic optimization problems of linear nonstationary systems
    Stenin A.A.
    Timoshin Y.A.
    Drozdovych I.G.
    Journal of Automation and Information Sciences, 2019, 51 (08) : 43 - 57