A strict version of the non-commutative Urysohn Lemma

被引:5
|
作者
Pedersen, GK
机构
关键词
strictly positive element; hereditary C*-subalgebra; Q-commuting algebras; approximative units;
D O I
10.1090/S0002-9939-97-03861-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a pair B, C of q-commuting, hereditary C*-subalgebras of a unital C*-algebra A, such that B boolean AND C is sigma-unital and 1 is an element of B + C, there is an element h in A, with 0 less than or equal to h less than or equal to 1, such that II is strictly positive in B and 1 - h is strictly positive in in C. Moreover, h - h(2) is strictly positive in in B boolean AND C.
引用
收藏
页码:2657 / 2660
页数:4
相关论文
共 50 条
  • [1] Non-commutative generalisations of Urysohn's lemma and hereditary inner ideals
    Fernandez-Polo, Francisco J.
    Peralta, Antonio M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (02) : 343 - 358
  • [2] A non-commutative sewing lemma
    Feyel, Denis
    De La Pradelle, Arnaud
    Mokobodzki, Gabriel
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 24 - 34
  • [3] The Non-Commutative Cycle Lemma
    Armstrong, Craig
    Mingo, James A.
    Speicher, Roland
    Wilson, Jennifer C. H.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (08) : 1158 - 1166
  • [4] A non-commutative version of Nikishin's theorem
    Tikhonov, O. E.
    Veselova, L. V.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (01): : 142 - 146
  • [5] A NOTE ON THE NON-COMMUTATIVE LAPLACE-VARADHAN INTEGRAL LEMMA
    De Roeck, W.
    Maes, Christian
    Netocny, Karel
    Rey-Bellet, Luc
    REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (07) : 839 - 858
  • [6] A non-commutative version of the minimal supersymmetric standard model
    M. Arai
    S. Saxell
    A. Tureanu
    The European Physical Journal C, 2007, 51 : 217 - 228
  • [7] Quantum Discrepancy: A Non-Commutative Version of Combinatorial Discrepancy
    Alishahi, Kasra
    Rajaee, Mohaddeseh
    Rajaei, Ali
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02): : 1 - 29
  • [8] A non-commutative version of the minimal supersymmetric standard model
    Arai, M.
    Saxell, S.
    Tureanu, A.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 51 (01): : 217 - 228
  • [9] Non-commutative automorphisms of bounded non-commutative domains
    McCarthy, John E.
    Timoney, Richard M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 1037 - 1045
  • [10] Testing non-commutative QED, constructing non-commutative MHD
    Guralnik, Z
    Jackiw, R
    Pi, SY
    Polychronakos, AP
    PHYSICS LETTERS B, 2001, 517 (3-4) : 450 - 456