Point spread function deconvolution of an Atmospheric Cherenkov Telescope

被引:0
|
作者
Kenny, G. E. [1 ]
Gillanders, G. H. [1 ]
Lang, M. J. [1 ]
机构
[1] Natl Univ Ireland Univ Coll Galway, Dept Phys, Galway, Ireland
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The effect of iteratively deconvolving Imaging Atmospheric Cherenkov Telescope (IACT) images is investigated here with the aim of exploiting the full resolution of an IACT photomultipher tube camera. The Richardson-Lucy method of de-blurring images was chosen for the study as it functions effectively in the presence of noise. After the Richardson-Lucy algorithm was integrated into the analysis software, the procedure was tested using Crab Nebula data collected with the Whipple 10m IACT. Using the measured Point Spread Function (PSF) of the instrument with the Richardson-Lucy subroutine, Cherenkov images were iteratively deconvolved. Following this, a full re-optimisation of picture and boundary thresholds and image selection parameters was carried out in an attempt to enhance the detected signal. The improvement in signal using this method was not statistically significant.
引用
收藏
页码:279 / 282
页数:4
相关论文
共 50 条
  • [1] Atmospheric Cherenkov telescope
    Jiang, YL
    Chen, YZ
    Xu, CX
    He, HL
    He, HH
    Li, HD
    Huo, AX
    HIGH ENERGY PHYSICS & NUCLEAR PHYSICS-ENGLISH EDITION, 1997, 21 (03): : 1 - 8
  • [2] Atmospheric Cherenkov telescope
    Kao Neng Wu Li Yu Ho Wu Li/High Energy Physics and Nuclear Physics, 1997, 21 (07): : 583 - 590
  • [3] The TACTIC atmospheric Cherenkov imaging telescope
    Koul, R.
    Tickoo, A. K.
    Kaul, S. K.
    Kaul, S. R.
    Kumar, N.
    Yadav, K. K.
    Bhatt, N.
    Venugopal, K.
    Goyal, H. C.
    Kothari, M.
    Chandra, P.
    Rannot, R. C.
    Dhar, V. K.
    Koul, M. K.
    Kaul, R. K.
    Kotwal, S.
    Chanchalani, K.
    Thoudam, S.
    Chouhan, N.
    Sharma, M.
    Bhattacharyya, S.
    Sahayanathan, S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 578 (03): : 548 - 564
  • [4] Performance of the STACEE Atmospheric Cherenkov telescope
    Williams, DA
    Bhattacharya, D
    Boone, LM
    Chantell, MC
    Conner, Z
    Covault, CE
    Dragovan, M
    Fortin, P
    Gingrich, D
    Gregorich, DT
    Hanna, DS
    Mohanty, G
    Mukherjee, R
    Ong, RA
    Oser, S
    Ragan, K
    Scalzo, RA
    Schuette, DR
    Théoret, CG
    Tümer, TO
    Vincent, F
    Zweerink, JA
    HIGH ENERGY GAMMA-RAY ASTRONOMY, 2001, 558 : 544 - 548
  • [5] The TRACE telescope point spread function for the 171 Å filter
    Gburek, S.
    Sylwester, J.
    Martens, P.
    SOLAR PHYSICS, 2006, 239 (1-2) : 531 - 548
  • [6] The Trace Telescope Point Spread Function for the 171 Å Filter
    S. Gburek
    J. Sylwester
    P. Martens
    Solar Physics, 2006, 239 : 531 - 548
  • [7] The optical system of the HESS imaging atmospheric Cherenkov telescopes.: Part II:: mirror alignment and point spread function
    Cornils, R
    Gillessen, S
    Jung, I
    Hofmann, W
    Beilicke, M
    Bernlöhr, K
    Carrol, O
    Elfahem, S
    Heinzelmann, G
    Hermann, G
    Horns, D
    Kankanyan, R
    Katona, A
    Krawczynski, H
    Panter, M
    Rayner, S
    Rowell, G
    Tluczykont, M
    van Staa, R
    ASTROPARTICLE PHYSICS, 2003, 20 (02) : 129 - 143
  • [8] CCD aided steering for an atmospheric Cherenkov telescope
    Sevilla, I
    Barrio, JA
    Fonseca, V
    ASTROPARTICLE PHYSICS, 2003, 19 (04) : 495 - 511
  • [9] The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array
    Daniel, M. K.
    ADAPTING TO THE ATMOSPHERE CONFERENCE 2014, 2015, 595
  • [10] Atmospheric monitoring using the Cherenkov Transparency Coefficient for the Cherenkov Telescope Array
    Stefanik, Stanislav
    Nosek, Dalibor
    ATMOSPHERIC MONITORING FOR HIGH ENERGY ASTROPARTICLE DETECTORS (ATMOHEAD) 2018, 2019, 197