We investigate the integrated far-ultraviolet (FUV) emission from globular clusters. We present new FUV photometry of M87's clusters based on archival Hubble Space Telescope (HST) Wide Field Planetary Camera 2 F170W observations. We use these data to test the reliability of published photometry based on HST space telescope imaging spectrograph FUV-MAMA observations, which are now known to suffer from significant red-leak. We generally confirm these previous FUV detections, but suggest they may be somewhat fainter. We compare the FUV emission from bright (MV < -9.0) clusters in the Milky Way, M31, M81 and M87 to each other and to the predictions from stellar populations models. Metal-rich globular clusters show a large spread in FUV - V, with some clusters in M31, M81 and M87 being much bluer than standard predictions. This requires that some metal-rich clusters host a significant population of blue/extreme horizontal branch (HB) stars. These hot HB stars are not traditionally expected in metal-rich environments, but are a natural consequence of multiple populations in clusters since the enriched population is observed to be He enhanced and will therefore produce bluer HB stars, even at high metallicity. We conclude that the observed FUV emission from metal-rich clusters in M31, M81 and M87 provides evidence that He-enhanced second populations, similar to those observed directly in the Milky Way, may be a ubiquitous feature of globular clusters in the local Universe. Future HST FUV photometry is required to both confirm our interpretation of these archival data and provide constraints on He-enriched second populations of stars in extragalactic globular clusters.