Hybrid Vlasov-MHD models: Hamiltonian vs. non-Hamiltonian

被引:32
|
作者
Tronci, Cesare [1 ]
Tassi, Emanuele [2 ,3 ,4 ]
Camporeale, Enrico [5 ]
Morrison, Philip J. [6 ,7 ]
机构
[1] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
[2] CNRS, F-13288 Marseille 9, France
[3] Ctr Phys Theor, F-13288 Marseille 9, France
[4] Univ Toulon & Var, CNRS, CPT, UMR 7332, F-83957 La Garde, France
[5] Ctr Wiskunde & Informat, NL-1098 XG Amsterdam, Netherlands
[6] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[7] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
关键词
magnetohydrodynamics; Vlasov equation; hybrid kinetic-MHD; ACTION PRINCIPLE FORMULATIONS; ALFVEN EIGENMODE; PLASMA DYNAMICS; SIMULATION; EQUATIONS; MAGNETOHYDRODYNAMICS; PHYSICS;
D O I
10.1088/0741-3335/56/9/095008
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper investigates hybrid kinetic-magnetohydrodynamic (MHD) models, where a hot plasma (governed by a kinetic theory) interacts with a fluid bulk (governed by MHD). Different nonlinear coupling schemes are reviewed, including the pressure-coupling scheme (PCS) used in modern hybrid simulations. This latter scheme suffers from being non-Hamiltonian and is unable to exactly conserve total energy. Upon adopting the Vlasov description for the hot component, the non-Hamiltonian PCS and a Hamiltonian variant are compared. Special emphasis is given to the linear stability of Alfven waves, for which it is shown that a spurious instability appears at high frequency in the non-Hamiltonian version. This instability is removed in the Hamiltonian version.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] HAMILTONIAN AND NON-HAMILTONIAN MODELS FOR WATER-WAVES
    OLVER, PJ
    LECTURE NOTES IN PHYSICS, 1984, 195 : 273 - 290
  • [2] Energy-Casimir stability of hybrid Vlasov-MHD models
    Tronci, Cesare
    Tassi, Emanuele
    Morrison, Philip J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (18) : 1 - 17
  • [3] Quantization of Hamiltonian and non-Hamiltonian systems
    Rashkovskiy, Sergey A.
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 267 - 288
  • [4] Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems
    Tuckerman, ME
    Liu, Y
    Ciccotti, G
    Martyna, GJ
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (04): : 1678 - 1702
  • [5] AMI study of Hamiltonian and non-Hamiltonian cyclophanes
    Türker, L
    INDIAN JOURNAL OF CHEMISTRY SECTION B-ORGANIC CHEMISTRY INCLUDING MEDICINAL CHEMISTRY, 1999, 38 (02): : 152 - 155
  • [6] Non-Hamiltonian monodromy
    Cushman, R
    Duistermaat, JJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 172 (01) : 42 - 58
  • [7] First integrals of hamiltonian and non-hamiltonian systems and chaos
    Bouquet, S.
    Dewisme, A.
    Proceedings Needs on Nonlinear Evolution Equations and Dynamical Systems, 1992,
  • [8] NON-HAMILTONIAN BICUBIC GRAPHS
    GEORGES, JP
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (01) : 121 - 124
  • [9] ALGORITHMS FOR NON-HAMILTONIAN DYNAMICS
    Sergi, Alessandro
    Ezra, Gregory S.
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2010, 88 (02):
  • [10] On the Number of Non-Hamiltonian Graphs
    P. V. Roldugin
    Mathematical Notes, 2004, 75 : 652 - 659