Finite group actions on 3-manifolds and cyclic branched covers of knots

被引:1
|
作者
Boileau, Michel [1 ]
Franchi, Clara [2 ]
Mecchia, Mattia [3 ]
Paoluzzi, Luisa [1 ]
Zimmermann, Bruno [3 ]
机构
[1] Aix Marseille Univ, CNRS, UMR 7373, Cent Marseille,I2M, F-13453 Marseille, France
[2] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis Niccolo Tartaglia, Via Musei 41, I-25121 Brescia, Italy
[3] Univ Trieste, Dipartimento Matemat & Geosci, Via Valerio 12-1, I-34127 Trieste, Italy
关键词
HYPERBOLIC KNOTS; 3-SPHERES; SPACES; LINKS;
D O I
10.1112/topo.12052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a consequence of a general result about finite group actions on 3-manifolds, we show that a hyperbolic 3-manifold can be the cyclic branched cover of at most fifteen inequivalent knots in S3 (in fact, a main motivation of the present paper is to establish the existence of such a universal bound). A similar, though weaker, result holds for arbitrary irreducible 3-manifolds: an irreducible 3-manifold can be a cyclic branched cover of odd prime order of at most six knots in S3. We note that in most other cases such a universal bound does not exist.
引用
收藏
页码:283 / 308
页数:26
相关论文
共 50 条
  • [1] 3-MANIFOLDS AS BRANCHED COVERS
    LICKORIS.WB
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1973, 74 (NOV): : 449 - 451
  • [2] FINITE-GROUP ACTIONS ON 3-MANIFOLDS
    MEEKS, WH
    SCOTT, P
    INVENTIONES MATHEMATICAE, 1986, 86 (02) : 287 - 346
  • [3] Finite group actions on homologically peripheral 3-manifolds
    Ikeda, Toru
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 151 : 319 - 337
  • [4] On Distinct Finite Covers of 3-manifolds
    Friedl, Stefan
    Park, Junghwan
    Petri, Bram
    Raimbault, Jean
    Ray, Arunima
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (02) : 809 - 846
  • [5] Finite covers of random 3-manifolds
    Nathan M. Dunfield
    William P. Thurston
    Inventiones mathematicae, 2006, 166 : 457 - 521
  • [6] Finite covers of random 3-manifolds
    Dunfield, Nathan M.
    Thurston, William P.
    INVENTIONES MATHEMATICAE, 2006, 166 (03) : 457 - 521
  • [8] ABOUT THREE CONJECTURES ON FINITE GROUP ACTIONS ON 3-MANIFOLDS
    Zimmermann, Bruno P.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 955 - 959
  • [9] Finite type invariants for knots in 3-manifolds
    Kalfagianni, E
    TOPOLOGY, 1998, 37 (03) : 673 - 707
  • [10] Spinning and branched cyclic covers of knots
    Kearton, C
    Wilson, SMJ
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986): : 2235 - 2244