Sums of cubes with shifts

被引:5
|
作者
Chow, Sam [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
WARING PROBLEM;
D O I
10.1112/jlms/jdu077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu(1), ... , mu(s) be real numbers, with mu(1) irrational. We investigate sums of shifted cubes F(x(1), ... , x(s)) = (x(1) - mu(1))(3) + center dot center dot center dot + (x(s) - mu(s))(3). We show that if eta is real, tau > 0 is sufficiently large, and s >= 9, then there exist integers x(1) > mu(1), ... , x(s) > mu(s) such that vertical bar F(x) -tau vertical bar < eta. This is a real analogue to Waring's problem. We then prove a full density result of the same flavour for s >= 5. For s >= 11, we provide an asymptotic formula. If s >= 6, then F(Z(s)) is dense on the reals. Given nine variables, we can generalize this to sums of univariate cubic polynomials.
引用
收藏
页码:343 / 366
页数:24
相关论文
共 50 条
  • [1] Equal sums, sums of squares and sums of cubes
    Jameson, G. J. O.
    MATHEMATICAL GAZETTE, 2022, 106 (565): : 54 - 60
  • [2] Sums of three cubes
    Pla, Juan
    FIBONACCI QUARTERLY, 2006, 44 (02): : 192 - 192
  • [3] SUMS OF 3 CUBES
    RINGROSE, CJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 33 : 407 - 413
  • [4] On equal sums of cubes
    Choudhry, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (04) : 1251 - 1257
  • [5] Sums of cubes of polynomials
    Car, M
    Gallardo, L
    ACTA ARITHMETICA, 2004, 112 (01) : 41 - 50
  • [6] SUMS OF 2 CUBES
    DOLAN, S
    MATHEMATICAL GAZETTE, 1983, 67 (439): : 61 - 61
  • [7] Bounds on sums of cubes
    Beardon, A. F.
    MATHEMATICAL GAZETTE, 2025, 109 (574): : 39 - 46
  • [8] Sums of three cubes
    Wooley, TD
    MATHEMATIKA, 2000, 47 (93-94) : 53 - 61
  • [10] On sums of seven cubes
    Bertault, F
    Ramaré, O
    Zimmermann, P
    MATHEMATICS OF COMPUTATION, 1999, 68 (227) : 1303 - 1310