Hierarchical Least Squares Optimal Control of 2-D Systems

被引:0
|
作者
Nyman, Per-Ole [1 ]
机构
[1] Univ Coll Narvik, Dept Comp Sci Elect Engn & Space Technol, N-8505 Narvik, Norway
关键词
2-D systems; linear quadratic control; optimization; indefinite least squares;
D O I
10.1109/ACC.2009.5160019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An indefinite least squares approach to discrete-time linear quadratic control of two-dimensional systems of Roesser type is presented. Initial and final boundary states are constrained to lie in affine subspaces. By introducing a hierarchical decomposition technique, the problem is converted to a collection of similar smaller size problems. Successive use of the decomposition technique renders computational feasibility on substantially larger coordinate grids than without decomposition. Necessary and sufficient conditions for existence of a unique optimal solution are provided in terms of the smaller size problems.
引用
收藏
页码:1736 / 1741
页数:6
相关论文
共 50 条
  • [1] OPTIMAL-CONTROL OF 2-D SYSTEMS
    LI, C
    FADALI, MS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (02) : 223 - 228
  • [2] Optimal control for singular 2-D systems
    Shafiee, M
    Karimaghaee, P
    UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 1617 - 1622
  • [3] Least squares optimization of 2-D IIR filters
    Dumitrescu, B
    NORSIG 2004: PROCEEDINGS OF THE 6TH NORDIC SIGNAL PROCESSING SYMPOSIUM, 2004, 46 : 33 - 36
  • [4] Optimal control of discrete stochastic 2-D systems
    Belbas, SA
    PROCEEDINGS OF THE TWENTY-NINTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 1997, : 493 - 497
  • [5] Weighted least squares design of 2-D digital filters
    Al-Naimy, FS
    Nigam, MJ
    Kasim, A
    MELECON 2000: INFORMATION TECHNOLOGY AND ELECTROTECHNOLOGY FOR THE MEDITERRANEAN COUNTRIES, VOLS 1-3, PROCEEDINGS, 2000, : 599 - 602
  • [6] 2-D FIR EIGENFILTERS - A LEAST-SQUARES APPROACH
    PEI, SC
    SHYU, JJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (01): : 24 - 34
  • [7] Constrained least squares design of 2-D FIR filters
    Lang, M
    Selesnick, IW
    Burrus, CS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (05) : 1234 - 1241
  • [8] An iterative formulation for the least squares approximation of 2-D signals
    Berg, AP
    Mikhael, WB
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 360 - 363
  • [9] Optimal control for 2-D systems under malicious attacks
    Li, Lingling
    Yang, Rongni
    Wu, Ligang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4245 - 4250
  • [10] STOCHASTIC LQ-OPTIMAL CONTROL FOR 2-D SYSTEMS
    SEBEK, M
    KRAUS, FJ
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1995, 6 (04) : 275 - 285