Spectroscopic Validation of Low-metallicity Stars from RAVE

被引:38
|
作者
Placco, Vinicius M. [1 ,2 ,19 ]
Beers, Timothy C. [1 ,2 ]
Santucci, Rafael M. [3 ,4 ]
Chaname, Julio [5 ,6 ]
Sepulveda, Maria Paz [5 ,6 ]
Coronado, Johanna [5 ,7 ]
Points, Sean D. [8 ]
Kaleida, Catherine C. [9 ]
Rossi, Silvia [10 ]
Kordopatis, Georges [11 ]
Lee, Young Sun [12 ]
Matijevic, Gal [13 ]
Frebel, Anna [2 ,14 ,15 ]
Hansen, Terese T. [16 ]
Holmbeck, Erika M. [1 ,2 ]
Rasmussen, Kaitlin C. [1 ,2 ]
Roederer, Ian U. [2 ,17 ]
Sakari, Charli M. [18 ]
Whitten, Devin D. [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[2] Michigan State Univ, Natl Superconducting Cyclotron Lab, Cyclotron Lab 1, Joint Inst Nucl Astrophys,Ctr Evolut Elements, E Lansing, MI 48824 USA
[3] Univ Fed Goias, Planetario, Inst Estudos Socioambientais, BR-74055140 Goiania, Go, Brazil
[4] Univ Fed Goias, Inst Fis, Campus Samambaia, BR-74001970 Goiania, Go, Brazil
[5] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago, Chile
[6] Millenium Inst Astrophys, Santiago, Chile
[7] Max Planck Inst Astron, Koningstuhl 17, D-69117 Heidelberg, Germany
[8] Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile
[9] Space Telescope Sci Inst, Baltimore, MD 21218 USA
[10] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508900 Sao Paulo, SP, Brazil
[11] Univ Cote dAzur, CNRS, Lab Lagrange, Observ Cote dAzur, F-06304 Nice 4, France
[12] Chungnam Natl Univ, Dept Astron & Space Sci, Daejeon 34134, South Korea
[13] Leibniz Inst Astrophys Potsdam AIP, Sterwarte 16, D-14482 Potsdam, Germany
[14] MIT, Dept Phys, Cambridge, MA 02139 USA
[15] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[16] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA
[17] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA
[18] Univ Washington, Dept Astron, Seattle, WA 98195 USA
[19] Kitt Peak Natl Observ, Tucson, AZ 85634 USA
来源
ASTRONOMICAL JOURNAL | 2018年 / 155卷 / 06期
基金
巴西圣保罗研究基金会; 新加坡国家研究基金会; 美国国家科学基金会;
关键词
Galaxy: halo; stars: abundances; stars: atmospheres; stars: carbon; stars: Population II; techniques: imaging spectroscopy; METAL-POOR STARS; VELOCITY EXPERIMENT RAVE; CHEMICAL ABUNDANCES; HAMBURG/ESO SURVEY; CARBON ABUNDANCES; SURVEY HERES; SKY SURVEY; SEARCH; SEGUE; SIGNATURES;
D O I
10.3847/1538-3881/aac20c
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present results from a medium-resolution (R similar to 2000) spectroscopic follow-up campaign of 1694 bright (V < 13.5), very metal-poor star candidates from the RAdial Velocity Experiment (RAVE). Initial selection of the low-metallicity targets was based on the stellar parameters published in RAVE Data Releases 4 and 5. Follow up was accomplished with the Gemini-N and Gemini-S, the ESO/NTT, the KPNO/Mayall, and the SOAR telescopes. The wavelength coverage for most of the observed spectra allows for the determination of carbon and a-element abundances, which are crucial for considering the nature and frequency of the carbon-enhanced metal-poor (CEMP) stars in this sample. We find that 88% of the observed stars have[Fe H] <= -1.0, 61% have [Fe H] <= -2.0, and 3% have[Fe H] <= -3.0 (with four stars at[Fe H] <= -3.5). There are 306 CEMP star candidates in this sample, and we identify 169 CEMP Group. I, 131 CEMP Group. II, and 6 CEMP Group. III stars from the A(C) versus [Fe/H] diagram. Inspection of the[alpha/C] abundance ratios reveals that five of the CEMP Group. II stars can be classified as "mono-enriched second-generation" stars. Gaia DR1 matches were found for 734 stars, and we show that transverse velocities can be used as a confirmatory selection criteria for low-metallicity candidates. Selected stars from our validated list are being followed-up with high-resolution spectroscopy to reveal their full chemical-abundance patterns for further studies.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The metallicity distribution function of extremely low-metallicity stars
    Beers, TC
    ASTROPHYSICS AND SPACE SCIENCE, 1999, 265 (1-4) : 105 - 113
  • [2] The Metallicity Distribution Function of Extremely low-Metallicity Stars
    T.C. Beers
    Astrophysics and Space Science, 1999, 265 : 105 - 113
  • [3] The early generations of low-metallicity stars
    Bromm, Volker
    STELLAR EVOLUTION AT LOW METALLICITY: MASS LOSS, EXPLOSIONS, COSMOLOGY, 2006, 353 : 285 - 298
  • [4] Effects of rotation in low-metallicity stars
    Heap, SR
    Lanz, T
    STELLAR ROTATION, 2004, (215): : 220 - 221
  • [5] New beryllium observations in low-metallicity stars
    Molaro, P
    Bonifacio, P
    Castelli, F
    Pasquini, L
    ASTRONOMY & ASTROPHYSICS, 1997, 319 (02) : 593 - 606
  • [6] Mass loss and very low-metallicity stars
    Hirschi, Raphael
    Chiappini, Cristina
    Meynet, Georges
    Ekstrom, Sylvia
    Maeder, Andre
    UNSOLVED PROBLEMS IN STELLAR PHYSICS: A CONFERENCE IN HONOUR OF DOUGLAS GOUGH, 2007, 948 : 397 - 404
  • [7] A search for low-metallicity pulsating B stars
    Engelbrecht, Chris
    Kgoadi, Refilwe
    Frescura, Fabio
    WIDE-FIELD VARIABILITY SURVEYS: A 21ST CENTURY PERSPECTIVE, 2017, 152
  • [8] Untangling the Sources of Abundance Dispersion in Low-metallicity Stars
    Griffith, Emily J.
    Johnson, Jennifer A.
    Weinberg, David H.
    Ilyin, Ilya
    Johnson, James W.
    Rodriguez-Martinez, Romy
    Strassmeier, Klaus G.
    ASTROPHYSICAL JOURNAL, 2023, 944 (01):
  • [9] Extremely Low-Metallicity Stars in the Classical Dwarf Galaxies
    Starkenburg, Else
    GALACTIC ARCHAEOLOGY: NEAR-FIELD COSMOLOGY AND THE FORMATION OF THE MILKY WAY, 2012, 458 : 311 - 314
  • [10] Low-metallicity (sub-SMC) massive stars
    Garcia, Miriam
    Herrero, Artemio
    Najarro, Francisco
    Camacho, Ines
    Lennon, Daniel J.
    Urbaneja, Miguel A.
    Castro, Norberto
    LIVES AND DEATH-THROES OF MASSIVE STARS, 2017, 12 (S329): : 313 - 321