Hybrid Dynamic Optimization Methods for Systems Biology with Efficient Sensitivities

被引:10
|
作者
Lewis, Nicholas R. [1 ]
Hedengren, John D. [1 ]
Haseltine, Eric L. [2 ]
机构
[1] Brigham Young Univ, Dept Chem Engn, 350 CB, Provo, UT 84602 USA
[2] Vertex Pharmaceut, Boston, MA 02210 USA
来源
PROCESSES | 2015年 / 3卷 / 03期
关键词
large-scale systems biology; ErbB signaling pathway; differential algebraic equations; data reconciliation; parameter sensitivity; hybrid simultaneous optimization; structural decomposition; MODEL-PREDICTIVE CONTROL; SIMULTANEOUS STRATEGIES; PARAMETER-ESTIMATION; DECOMPOSITION; COLLOCATION; ALGORITHM; PATHWAYS; BEHAVIOR; NETWORK;
D O I
10.3390/pr3030701
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In recent years, model optimization in the field of computational biology has become a prominent area for development of pharmaceutical drugs. The increased amount of experimental data leads to the increase in complexity of proposed models. With increased complexity comes a necessity for computational algorithms that are able to handle the large datasets that are used to fit model parameters. In this study the ability of simultaneous, hybrid simultaneous, and sequential algorithms are tested on two models representative of computational systems biology. The first case models the cells affected by a virus in a population and serves as a benchmark model for the proposed hybrid algorithm. The second model is the ErbB model and shows the ability of the hybrid sequential and simultaneous method to solve large-scale biological models. Post-processing analysis reveals insights into the model formulation that are important for understanding the specific parameter optimization. A parameter sensitivity analysis reveals shortcomings and difficulties in the ErbB model parameter optimization due to the model formulation rather than the solver capacity. Suggested methods are model reformulation to improve input-to-output model linearity, sensitivity ranking, and choice of solver.
引用
收藏
页码:701 / 729
页数:29
相关论文
共 50 条
  • [1] Dynamic optimization of hybrid systems
    Galan, S
    Barton, PI
    COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 : S183 - S190
  • [2] Hybrid computational modeling methods for systems biology
    Cruz, Daniel A.
    Kemp, Melissa L.
    PROGRESS IN BIOMEDICAL ENGINEERING, 2022, 4 (01):
  • [3] Modeling and Optimization of Hybrid Dynamic Systems
    Mynttinen, Ines
    Li, Pu
    CHEMIE INGENIEUR TECHNIK, 2012, 84 (11) : 1957 - 1970
  • [4] DOTcvpSB, a software toolbox for dynamic optimization in systems biology
    Hirmajer, Tomas
    Balsa-Canto, Eva
    Banga, Julio R.
    BMC BIOINFORMATICS, 2009, 10
  • [5] DOTcvpSB, a software toolbox for dynamic optimization in systems biology
    Tomáš Hirmajer
    Eva Balsa-Canto
    Julio R Banga
    BMC Bioinformatics, 10
  • [6] Global Optimization in Systems Biology: Stochastic Methods and Their Applications
    Balsa-Canto, Eva
    Banga, J. R.
    Egea, J. A.
    Fernandez-Villaverde, A.
    de Hijas-Liste, G. M.
    ADVANCES IN SYSTEMS BIOLOGY, 2012, 736 : 409 - 424
  • [7] Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology
    Gonzalez, Patricia
    Argueso-Alejandro, Pablo
    Penas, David R.
    Pardo, Xoan C.
    Saez-Rodriguez, Julio
    Banga, Julio R.
    Doallo, Ramon
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (07): : 3471 - 3498
  • [8] Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology
    Patricia González
    Pablo Argüeso-Alejandro
    David R. Penas
    Xoan C. Pardo
    Julio Saez-Rodriguez
    Julio R. Banga
    Ramón Doallo
    The Journal of Supercomputing, 2019, 75 : 3471 - 3498
  • [9] Hybrid Intelligent Dynamic Optimization of Switched Systems
    Li H.
    Fu J.
    Chai T.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (06): : 1679 - 1690
  • [10] Global dynamic optimization of linear hybrid systems
    Lee, CK
    Barton, PI
    FRONTIERS IN GLOBAL OPTIMIZATION, 2003, 74 : 289 - 312