SOC Estimation Based on OCV and Online Identification Parameters Of Lithium Ion Batteries with ADALINE

被引:0
|
作者
Aggoun, Ghania [1 ]
Mansouri, Rachid [1 ]
Abdeslam, Djaffar Ould [2 ]
机构
[1] Mouloud Mammeri Univ, Lab L2CSP, BP 17 RP, Tizi Ouzou, Algeria
[2] Univ Haute Alsace, MIPS Lab, F-68093 Mulhouse, France
关键词
state-of-charge; equivalent circuit model; Parameter Identification; Adaptive linear neuron; State Observer Design; Coulomb integral; open-circuit voltage; STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The state of charge (SOC) is a critical parameter of a Li-ion battery, which is the most important energy storage in Electric Vehicles (EVs) and the Smart Grid. An accurate on-line estimation of the SOC is important for forecasting the EV driving range and battery energy storage system (BESS) power dispatching. A good estimation of the SOC results from a good identification of the battery parameters. Reducing the algorithm complexity is important to improve the accuracy of SOC estimation results. Several methods of identification are used, among them; we use the adaptive neurons networks, ADALINE. The advantage of this approach is the speed of execution (fast training) as well as the possibility of interpreting these weights. In this paper, after considering a resistor-capacitor (2RC) circuit-equivalent model for the battery, a parameter identification technique is applied to the real current and voltage data to estimate and update the parameters of the battery at each step. Subsequently, a reduced-order linear observer is designed for this continuously updating model to estimate the SOC as one of the states of the battery system. In designing the observer, a mixture of Coulomb counting and VOC algorithm is combined with the adaptive parameter-updating approach based on the ADALINE.
引用
收藏
页码:538 / 543
页数:6
相关论文
共 50 条
  • [1] Online SoC Estimation for Lithium-ion Batteries Based on the OCV Online Calculation and Coulomb Counting Method
    Li, Wenfan
    Ren, Ren
    Ma, Haifeng
    Wang, Yaoxiong
    Wang, Junxiong
    Yang, Wei
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 1824 - 1830
  • [2] Estimation of fractional SOC for lithium batteries based on OCV hysteretic characteristics
    Haizhong Chen
    Feng Liu
    Huiheng Hou
    Xin Shen
    Ionics, 2024, 30 : 2627 - 2641
  • [3] Estimation of fractional SOC for lithium batteries based on OCV hysteretic characteristics
    Chen, Haizhong
    Liu, Feng
    Hou, Huiheng
    Shen, Xin
    IONICS, 2024, 30 (05) : 2627 - 2641
  • [4] A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Linjing
    Liu, Sijia
    Wang, Leyi
    Loh, Poh Chiang
    ENERGIES, 2016, 9 (11)
  • [5] State of Charge Estimation of Lithium-ion Batteries Based on Online OCV Curve Construction
    Wang, Xuemei
    Gong, Ruiyun
    Yang, Zhao
    Kang, Longyun
    BATTERIES-BASEL, 2024, 10 (06):
  • [6] An Online SOC and SOH Estimation Model for Lithium-Ion Batteries
    Huang, Shyh-Chin
    Tseng, Kuo-Hsin
    Liang, Jin-Wei
    Chang, Chung-Liang
    Pecht, Michael G.
    ENERGIES, 2017, 10 (04):
  • [7] Model Parameters Online Identification and SOC Joint Estimation for Lithium-Ion Battery Based on a Composite Algorithm
    Hong-Yu Long
    Cheng-Yong Zhu
    Bi-Bin Huang
    Chang-Hao Piao
    Ya-Qing Sun
    Journal of Electrical Engineering & Technology, 2019, 14 : 1485 - 1493
  • [8] Model Parameters Online Identification and SOC Joint Estimation for Lithium-Ion Battery Based on a Composite Algorithm
    Long, Hong-Yu
    Zhu, Cheng-Yong
    Huang, Bi-Bin
    Piao, Chang-Hao
    Sun, Ya-Qing
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (04) : 1485 - 1493
  • [9] Improved SOC estimation of lithium-ion batteries with novel SOC-OCV curve estimation method using equivalent circuit model
    Song, Youngbin
    Park, Minjun
    Seo, Minhwan
    Kim, Sang Woo
    2019 4TH INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE TECHNOLOGIES (SPLITECH), 2019, : 317 - 322
  • [10] SOC Estimation for Lithium-ion Batteries Based on EKF
    Li W.
    Liu W.
    Deng Y.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2020, 31 (03): : 321 - 327and343