Accuracy of the replacement relations for materials with non-ellipsoidal inhomogeneities

被引:20
|
作者
Chen, Fengjuan [1 ]
Sevostianov, Igor [2 ]
Giraud, Albert [1 ]
Grgic, Dragan [1 ]
机构
[1] Lorraine Univ ENSG, GeoRessources Lab, CNRS, CREGU, F-54501 Vandoeuvre Les Nancy, France
[2] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA
关键词
Replacement relation; Effective properties; Supersphere; EFFECTIVE ELASTIC PROPERTIES; CONTRIBUTION TENSORS; ESHELBY TENSOR; PORE-FILL; COMPLIANCES; INCLUSIONS; MATRIX; SOLIDS; ENERGY; MODULI;
D O I
10.1016/j.ijsolstr.2016.10.023
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we focus on replacement relation that links the property contribution tensors of inhomogeneities having the same shape but different elastic properties. We check the possibility to apply the relations, originally derived for ellipsoidal inhomogeneities (Sevostianov & Kachanov 2007) to ones of non-ellipsoidal shape. We discuss inhomogeneities of superspherical shape, described by equation x(2p) +y(2p) + z(2p) <= 1 and show that the replacement relations can be used in the rank of convex shapes (p > 0.5), while for concave shapes the error is significant. In practical applications, it means that for materials with convex inhomogeneities results obtained for effective elastic constants of a porous material can be used to approximately evaluate effective properties of a composite of the same morphology. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 50 条
  • [1] On the absence of the Eshelby property for slender non-ellipsoidal inhomogeneities
    Andrianov, Igor V.
    Argatov, Ivan I.
    Weichert, Dieter
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2093): : 1079 - 1088
  • [2] On the absence of Eshelby property for non-ellipsoidal inclusions
    Lubarda, VA
    Markenscoff, X
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1998, 35 (25) : 3405 - 3411
  • [3] New micromagnetic states in non-ellipsoidal nanoparticles
    Tartakovskaya, E. V.
    Tucker, J. W.
    Ivanov, B. A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : E1165 - E1166
  • [4] DEMAGNETIZING FACTORS IN NON-ELLIPSOIDAL SAMPLES - REVIEW
    JOSEPH, RI
    GEOPHYSICS, 1976, 41 (05) : 1052 - 1054
  • [5] Non-ellipsoidal inclusions as geological strain markers and competence indicators
    Treagus, SH
    Hudleston, PJ
    Lan, L
    JOURNAL OF STRUCTURAL GEOLOGY, 1996, 18 (09) : 1167 - 1172
  • [6] Spin-wave spectra of non-ellipsoidal magnetic dots
    Guslienko, KY
    Slavin, AN
    EUROPEAN MAGNETIC MATERIALS AND APPLICATIONS, 2001, 373-3 : 217 - 220
  • [7] Joint tracking and classification algorithm of non-ellipsoidal extended target
    Zhan R.
    Wang L.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2022, 44 (05): : 158 - 170
  • [8] Local demagnetizing tensor calculation for arbitrary non-ellipsoidal bodies
    Huang, XH
    PardaviHorvath, M
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) : 4180 - 4182
  • [9] Tracking of Non-Ellipsoidal Extended Target Using Negative Measurements
    Chen, Xiaobo
    Ji, Hongbing
    Zhang, Yongquan
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS I, 2017, 1820
  • [10] EFFECT OF NON-ELLIPSOIDAL NONPARABOLIC BAND-STRUCTURE ON MAGNETORESISTANCE IN BISMUTH
    WU, CC
    TSAI, J
    PHYSICAL REVIEW B, 1976, 13 (06): : 2366 - 2371