Strong-Earthquake-Prone Areas Recognition Based on an Algorithm with a Single Pure Training Class: I. Altai-Sayan-Baikal Region, M ≥ 6.0

被引:9
|
作者
Dzeboev, B. A. [1 ,3 ]
Gvishiani, A. D. [1 ,2 ]
Belov, I. O. [1 ]
Agayan, S. M. [1 ]
Tatarinov, V. N. [1 ,2 ]
Barykina, Yu, V [1 ]
机构
[1] Russian Acad Sci, Geophys Ctr, Moscow 119296, Russia
[2] Russian Acad Sci, Schmidt Inst Phys Earth, Moscow 123242, Russia
[3] Russian Acad Sci, Vladikavkaz Sci Ctr, Geophys Inst, Vladikavkaz 362002, Russia
基金
俄罗斯科学基金会;
关键词
earthquake-prone areas; pattern recognition; EPA method; Kora-3 (Cora-3; Crust-3) algorithm; Barrier-3; algorithm; earthquake epicenter; seismic hazard assessment; mountainous country; GEOINFORMATICS;
D O I
10.1134/S1069351319040050
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new version of the Barrier algorithm is proposed for recognition of strong-earthquake prone regions based on training over a single reliable training class. The modification of the algorithm consists in creating blocks that reveal the geological-geophysical features (attributes) characteristic of the recognized highly seismic objects and provide their quantitative estimates. The recognition of the areas prone to earthquakes with M >= 6.0 is carried out for the Altai-Sayan-Baikal region. The results of the recognition are used for assessing the effect of the remote earthquakes that occurred in the Altai-Sayan orogenic region on the stability of structural-tectonic crustal blocks in the contact zone of the West Siberian platform and the Siberian plate.
引用
收藏
页码:563 / 575
页数:13
相关论文
共 5 条
  • [1] Strong-Earthquake-Prone Areas Recognition Based on an Algorithm with a Single Pure Training Class: I. Altai–Sayan–Baikal Region, М ≥ 6.0
    B. A. Dzeboev
    A. D. Gvishiani
    I. O. Belov
    S. M. Agayan
    V. N. Tatarinov
    Yu. V. Barykina
    Izvestiya, Physics of the Solid Earth, 2019, 55 : 563 - 575
  • [2] Recognition of Strong Earthquake Prone Areas in the Altai-Sayan-Baikal Region
    Gorshkov, A. I.
    Soloviev, A. A.
    Zharkikh, Ju. I.
    DOKLADY EARTH SCIENCES, 2018, 479 (01) : 412 - 414
  • [3] Recognition of earthquake-prone areas in the Altai-Sayan-Baikal region based on the morphostructural zoning
    Gorshkov, A., I
    Soloviev, A. A.
    RUSSIAN JOURNAL OF EARTH SCIENCES, 2021, 21 (01):
  • [4] Recognition of Strong Earthquake Prone Areas in the Altai–Sayan–Baikal Region
    A. I. Gorshkov
    A. A. Soloviev
    Ju. I. Zharkikh
    Doklady Earth Sciences, 2018, 479 : 412 - 414
  • [5] Strong earthquake-prone areas recognition based on the algorithm with a single pure training class. II. Caucasus, M ≥ 6.0. Variable EPA method
    Dzeboev, B. A.
    Soloviev, A. A.
    Dzeranov, B. V.
    Karapetyan, J. K.
    Sergeeva, N. A.
    RUSSIAN JOURNAL OF EARTH SCIENCES, 2019, 19 (06):