The Cauchy Problem for Non-linear Higher Order Hartree Type Equation in Modulation Spaces

被引:2
|
作者
Manna, Ramesh [1 ]
机构
[1] Tata Inst Fundamental Res, Ctr Applicable Math, Bengaluru 560065, Karnataka, India
关键词
Non-linear Hartree equation; Well-posedness; Modulation spaces; SCHRODINGER-EQUATIONS; FOURIER MULTIPLIERS; TIME;
D O I
10.1007/s00041-018-9629-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study theCauchy problem forHartree equationwith cubic convolution nonlinearity F( u) = ( K | u| 2k) u under a specified condition on potential K with Cauchy data in modulation spacesMp, q ( Rn). We establish global well- posedness results inM1,1( Rn), when K( x) =. | x|. (.. R, 0 <. < min{2, n 2}), for k < n+ 2-. n; and local wellposedness results in M1,1( Rn), when K( x) =. | x|. (.. R, 0 <. < n), for k. N; in Mp, q ( Rn) with 1 = p = 4, 1 = q = 22k- 2 22k- 2- 1, k. N, when K. M 8, 1( Rn). Moreover, we also consider theCauchy problem for the non- linear higher order Hartree equations on modulation spaces Mp, 1( Rn), when K. M1,8 ( Rn) and show the existence of a unique global solution by using integrability of time decay factors of Strichartz estimates. As a consequence, we are able to deal with wider classes of a nonlinearity and a solution space.
引用
收藏
页码:1319 / 1349
页数:31
相关论文
共 50 条