Pathological Diagnosis of Adult Craniopharyngioma on MR Images: An Automated End-to-End Approach Based on Deep Neural Networks Requiring No Manual Segmentation

被引:4
|
作者
Teng, Yuen [1 ]
Ran, Xiaoping [1 ,2 ]
Chen, Boran [1 ]
Chen, Chaoyue [1 ]
Xu, Jianguo [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Neurosurg, Chengdu 610041, Peoples R China
[2] Ziyang Peoples Hosp, Dept Neurosurg, Ziyang 641300, Peoples R China
关键词
craniopharyngioma; MRI; convolutional neural network; computer-aided diagnosis; pathological diagnosis; BRAIN-TUMOR SEGMENTATION; CENTRAL-NERVOUS-SYSTEM; DIFFERENTIATION; FEATURES; MANAGEMENT; MUTATIONS;
D O I
10.3390/jcm11247481
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose: The goal of this study was to develop end-to-end convolutional neural network (CNN) models that can noninvasively discriminate papillary craniopharyngioma (PCP) from adamantinomatous craniopharyngioma (ACP) on MR images requiring no manual segmentation. Materials and methods: A total of 97 patients diagnosed with ACP or PCP were included. Pretreatment contrast-enhanced T1-weighted images were collected and used as the input of the CNNs. Six models were established based on six networks, including VGG16, ResNet18, ResNet50, ResNet101, DenseNet121, and DenseNet169. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were used to assess the performances of these deep neural networks. A five-fold cross-validation was applied to evaluate the performances of the models. Results: The six networks yielded feasible performances, with area under the receiver operating characteristic curves (AUCs) of at least 0.78 for classification. The model based on Resnet50 achieved the highest AUC of 0.838 +/- 0.062, with an accuracy of 0.757 +/- 0.052, a sensitivity of 0.608 +/- 0.198, and a specificity of 0.845 +/- 0.034, respectively. Moreover, the results also indicated that the CNN method had a competitive performance compared to the radiomics-based method, which required manual segmentation for feature extraction and further feature selection. Conclusions: MRI-based deep neural networks can noninvasively differentiate ACP from PCP to facilitate the personalized assessment of craniopharyngiomas.
引用
收藏
页数:12
相关论文
共 47 条
  • [1] A study on tooth segmentation and numbering using end-to-end deep neural networks
    Silva, Bernardo
    Pinheiro, Lais
    Oliveira, Luciano
    Pithon, Matheus
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 164 - 171
  • [2] Leukocyte Segmentation via End-to-End Learning of Deep Convolutional Neural Networks
    Lu, Yan
    Fan, Haoyi
    Li, Zuoyong
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 191 - 200
  • [3] An End-to-End Approach for Bearing Fault Diagnosis Based on a Deep Convolution Neural Network
    Chen, Liang
    Zhuang, Yuxuan
    Zhang, Jinghua
    Wang, Jianming
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 101 - 109
  • [4] Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images
    Ben Naceur, Mostefa
    Saouli, Rachida
    Akil, Mohamed
    Kachouri, Rostom
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 166 : 39 - 49
  • [5] Deep Neural Networks Based End-to-End DOA Estimation System
    Ando, Daniel Akira
    Kase, Yuya
    Nishimura, Toshihiko
    Sato, Takanori
    Ohganey, Takeo
    Ogawa, Yasutaka
    Hagiwara, Junichiro
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2023, E106B (12) : 1350 - 1362
  • [6] Segmentation of Retinal Layer Boundary in OCT Images Based on End-to-end Deep Neural Network and Graph Search
    Hu K.
    Jiang S.
    Liu D.
    Gao X.-P.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (06): : 3036 - 3051
  • [7] An End-to-End Approach for Seam Carving Detection Using Deep Neural Networks
    Moreira, Thierry P.
    Santana, Marcos Cleison S.
    Passos, Leandro A.
    Papa, Joao Paulo
    da Costa, Kelton Augusto P.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 447 - 457
  • [8] Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach
    Zhou, Xiangrong
    Takayama, Ryosuke
    Wang, Song
    Zhou, Xinxin
    Hara, Takeshi
    Fujita, Hiroshi
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [9] Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
    Chen, Chaoyue
    Zhang, Ting
    Teng, Yuen
    Yu, Yijie
    Shu, Xin
    Zhang, Lei
    Zhao, Fumin
    Xu, Jianguo
    EUROPEAN RADIOLOGY, 2023, 33 (04) : 2665 - 2675
  • [10] Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
    Chaoyue Chen
    Ting Zhang
    Yuen Teng
    Yijie Yu
    Xin Shu
    Lei Zhang
    Fumin Zhao
    Jianguo Xu
    European Radiology, 2023, 33 : 2665 - 2675