On a p-Kirchhoff equation via Krasnoselskii's genus

被引:114
|
作者
Correa, Francisco Julio S. A. [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat & Estatisit, BR-58109970 Paraiba, PB, Brazil
[2] Fed Univ Para, Fac Matemat, ICEN, BR-66075110 Belem, Para, Brazil
关键词
Genus theory; Nonlocal problems; Kirchhoff equation; ELLIPTIC EQUATION;
D O I
10.1016/j.aml.2008.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work will use the genus theory, introduced by Krasnoselskii, to show a result of existence and multiplicity of solutions of the p-Kirchhoff equation -[M(integral(Omega) vertical bar del u vertical bar(p)dx)](p-1) Delta(p)u = f(x, u) in Omega, u = 0 on partial derivative Omega where Omega is a bounded smooth domain of R-N, 1 < p < N, and M and f are continuous functions. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:819 / 822
页数:4
相关论文
共 50 条
  • [1] On a bi-nonlocal p(x)-Kirchhoff equation via Krasnoselskii's genus
    Correa, Francisco Julio S. A.
    dos Reis Costa, Augusto Cesar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (01) : 87 - 93
  • [2] On a fractional Kirchhoff-type equation via Krasnoselskii's genus
    Figueiredo, Giovany M.
    Bisci, Giovanni Molica
    Servadei, Raffaella
    ASYMPTOTIC ANALYSIS, 2015, 94 (3-4) : 347 - 361
  • [3] ON THE CRITICAL p-KIRCHHOFF EQUATION
    Hasani, Erisa
    Perera, Kanishka
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (01) : 383 - 391
  • [4] On an elliptic equation of p-Kirchhoff type via variational methods
    Correa, Francisco Julio S. A.
    Figueiredo, Giovany M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (02) : 263 - 277
  • [5] Multiplicity of solutions for a p-Kirchhoff equation
    Huang, Jincheng
    Jiang, Zhaomin
    Li, Zhiyan
    Wang, Jun
    BOUNDARY VALUE PROBLEMS, 2017,
  • [6] Multiplicity of solutions for a p-Kirchhoff equation
    Jincheng Huang
    Zhaomin Jiang
    Zhiyan Li
    Jun Wang
    Boundary Value Problems, 2017
  • [7] On a p-Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem
    Liu, Duchao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) : 302 - 308
  • [8] MULTIPLE NONTRIVIAL SOLUTIONS TO A p-KIRCHHOFF EQUATION
    Li, Anran
    Su, Jiabao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (01) : 91 - 102
  • [9] Multiple nontrivial solutions to a p-Kirchhoff equation
    Liu, Duchao
    Zhao, Peihao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 5032 - 5038
  • [10] Horizontal p-Kirchhoff equation on the Heisenberg group
    Razani, Abdolrahman
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193