Recognition of Nested Gates in CNF Formulas

被引:6
|
作者
Iser, Markus [1 ]
Manthey, Norbert [2 ]
Sinz, Carsten [1 ]
机构
[1] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[2] Dresden Univ Technol TUD, Dresden, Germany
关键词
SAT;
D O I
10.1007/978-3-319-24318-4_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new algorithm to efficiently extract information about nested functional dependencies between variables of a formula in CNF. Our algorithm uses the relation between gate encodings and blocked sets in CNF formulas. Our notion of "gate" emphasizes this relation. The presented algorithm is central to our new tool, cnf2aig, that produces equisatisfiable and-inverter-graphs (AIGs) from CNF formulas. We compare the novel algorithm to earlier approaches and show that the produced AIG are generally more succinct and use less input variables. As the gate-detection is related to the structure of input formulas, we furthermore analyze the gate-detection before and after applying preprocessing techniques.
引用
收藏
页码:255 / 271
页数:17
相关论文
共 50 条
  • [1] Mapping many-valued CNF formulas to boolean CNF formulas
    Ansótegui, C
    Manyà, F
    35TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2005, : 290 - 295
  • [2] On linear CNF formulas
    Porschen, Stefan
    Speckenmeyer, Ewald
    Randerath, Bert
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2006, PROCEEDINGS, 2006, 4121 : 212 - 225
  • [3] Generalizations of matched CNF formulas
    Stefan Szeider
    Annals of Mathematics and Artificial Intelligence, 2005, 43 : 223 - 238
  • [4] Linear CNF formulas and satisfiability
    Porschen, Stefan
    Speckenmeyer, Ewald
    Zhao, Xishun
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1046 - 1068
  • [5] Maximal Satisfiable CNF Formulas
    Porschen, Stefan
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 240 - 245
  • [6] Generalizations of matched CNF formulas
    Szeider, S
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2005, 43 (1-4) : 223 - 238
  • [7] COUNTING SOLUTIONS TO RANDOM CNF FORMULAS
    Galanis, Andreas
    Goldberg, Leslie Ann
    Guo, Heng
    Yang, Kuan
    SIAM JOURNAL ON COMPUTING, 2021, 50 (06) : 1701 - 1738
  • [8] On extremal k-CNF formulas
    Amano, Kazuyuki
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 39 - 50
  • [9] The ROBDD size of simple CNF formulas
    Langberg, M
    Pnueli, A
    Rodeh, Y
    CORRECT HARDWARE DESIGN AND VERIFICATION METHODS, PROCEEDINGS, 2003, 2860 : 363 - 377
  • [10] Exact satisfiability of linear CNF formulas
    Schuh, Bernd R.
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 1 - 4