Automated quantification of lateral ventricle volumes in normal pressure hydrocephalus from computed tomography scans using deep learning

被引:0
|
作者
Srikrishna, Meera [1 ,2 ]
Seo, Woosung [3 ]
Virhammar, Johan [4 ]
Fallmar, David [3 ]
Scholl, Michael [1 ,2 ]
机构
[1] Univ Gothenburg, Wallenberg Ctr Mol & Translat Med, S-40530 Gothenburg, Sweden
[2] Univ Gothenburg, Dept Psychiat & Neurochem, Inst Physiol & Neurosci, S-40530 Gothenburg, Sweden
[3] Uppsala Univ, Dept Surg Sci, Neuroradiol, S-75185 Uppsala, Sweden
[4] Uppsala Univ, Dept Med Sci, Neurol, S-75185 Uppsala, Sweden
来源
FLUIDS AND BARRIERS OF THE CNS | 2022年 / 19卷
关键词
D O I
暂无
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] A Novel deep learning approach for the automated diagnosis of normal pressure hydrocephalus
    Rudhra, B.
    Malu, G.
    Sherly, Elizabeth
    Mathew, Robert
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (05) : 5299 - 5307
  • [2] DEEP-LEARNING AUTOMATED SEGMENTATION AND QUANTIFICATION OF PERICARDIAL ADIPOSE TISSUE FROM NON-CONTRAST CALCIUM-SCORING COMPUTED TOMOGRAPHY SCANS
    Mahmoudi, Elham
    Lopez-Jimenez, Francisco
    Khosravi, Bardia
    Naderian, Mohammadreza
    Medina-Inojosa, Betsy J.
    Medina-Inojosa, Jose
    Erickson, Bradley J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 1558 - 1558
  • [3] Hydrocephalus classification in brain computed tomography medical images using deep learning
    Al Rub, Salsabeel Abu
    Alaiad, Ahmad
    Hmeidi, Ismail
    Quwaider, Muhannad
    Alzoubi, Omar
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 123
  • [4] A method for automated masking and plantar pressure analysis using segmented computed tomography scans
    Brady, Lynda M.
    Wukelic, Corey
    Ledoux, William R.
    GAIT & POSTURE, 2024, 111 : 92 - 98
  • [5] A method for automated masking and plantar pressure analysis using segmented computed tomography scans
    Brady, Lynda M.
    Wukelic, Corey
    Ledoux, William R.
    GAIT & POSTURE, 2024, 111 : 92 - 98
  • [6] Automated Detection, Segmentation, and Classification of Pleural Effusion From Computed Tomography Scans Using Machine Learning
    Sexauer, Raphael
    Yang, Shan
    Weikert, Thomas
    Poletti, Julien
    Bremerich, Jens
    Roth, Jan Adam
    Sauter, Alexander Walter
    Anastasopoulos, Constantin
    INVESTIGATIVE RADIOLOGY, 2022, 57 (08) : 552 - 559
  • [7] Deep Learning Based Staging of Bone Lesions From Computed Tomography Scans
    Masoudi, Samira
    Mehralivand, Sherif
    Harmon, Stephanie A.
    Lay, Nathan
    Lindenberg, Liza
    Mena, Esther
    Pinto, Peter A.
    Citrin, Deborah E.
    Gulley, James L.
    Wood, Bradford J.
    Dahut, William L.
    Madan, Ravi A.
    Bagci, Ulas
    Choyke, Peter L.
    Turkbey, Baris
    IEEE ACCESS, 2021, 9 : 87531 - 87542
  • [8] OzNet: A New Deep Learning Approach for Automated Classification of COVID-19 Computed Tomography Scans
    Ozaltin, Oznur
    Yeniay, Ozgur
    Subasi, Abdulhamit
    BIG DATA, 2023, 11 (06) : 420 - 436
  • [9] Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model
    Kim, Ye Rin
    Yoon, Yu Sung
    Cha, Jang Gyu
    DIAGNOSTICS, 2024, 14 (07)
  • [10] AUTOMATED DENSITY-MEASUREMENTS FROM LUNG COMPUTED-TOMOGRAPHY SCANS FOR THE QUANTIFICATION OF EMPHYSEMA AND FIBROSIS
    FROMSON, BH
    DENISON, DM
    BRITISH JOURNAL OF RADIOLOGY, 1987, 60 (716): : 793 - 794