An Introduction to Latent Variable Mixture Modeling (Part 1): Overview and Cross-Sectional Latent Class and Latent Profile Analyses

被引:649
|
作者
Berlin, Kristoffer S. [1 ]
Williams, Natalie A. [2 ]
Parra, Gilbert R. [3 ]
机构
[1] Univ Memphis, Dept Psychol, Memphis, TN 38152 USA
[2] Univ Nebraska Lincoln, Dept Child Youth & Family Studies, Lincoln, NE USA
[3] Univ So Mississippi, Dept Psychol, Hattiesburg, MS 39406 USA
关键词
cross-sectional data analysis; latent class; latent profile; person-centered; statistical analysis; structural equation modeling; BODY-MASS INDEX; CHILDREN; TRAJECTORIES; PATTERNS; BEDROOM; NUMBER;
D O I
10.1093/jpepsy/jst084
中图分类号
B844 [发展心理学(人类心理学)];
学科分类号
040202 ;
摘要
Objective Pediatric psychologists are often interested in finding patterns in heterogeneous cross-sectional data. Latent variable mixture modeling is an emerging person-centered statistical approach that models heterogeneity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of this article is to offer a nontechnical introduction to cross-sectional mixture modeling. Method An overview of latent variable mixture modeling is provided and 2 cross-sectional examples are reviewed and distinguished. Results Step-by-step pediatric psychology examples of latent class and latent profile analyses are provided using the Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999 data file. Conclusions Latent variable mixture modeling is a technique that is useful to pediatric psychologists who wish to find groupings of individuals who share similar data patterns to determine the extent to which these patterns may relate to variables of interest.
引用
收藏
页码:174 / 187
页数:14
相关论文
共 50 条