Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis

被引:67
|
作者
Duan, Dengle [1 ,2 ]
Lei, Hanwu [2 ]
Wang, Yunpu [1 ]
Ruan, Roger [1 ,4 ,5 ]
Liu, Yuhuan [1 ]
Ding, Lijun [6 ]
Zhang, Yayun [3 ]
Liu, Lang [7 ]
机构
[1] Nanchang Univ, Minist Educ, Engn Res Ctr Biomass Convers, State Key Lab Food Sci & Technol, Nanchang 330047, Jiangxi, Peoples R China
[2] Washington State Univ, Dept Biol Syst Engn, 2710 Crimson Way, Richland, WA 99354 USA
[3] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[4] Univ Minnesota, Ctr Biorefining, 1390 Eckles Ave, St Paul, MN 55108 USA
[5] Univ Minnesota, Dept Bioprod & Biosyst Engn, 1390 Eckles Ave, St Paul, MN 55108 USA
[6] Guangdong Univ Technol, Fac Chem Engn & Light Ind, Guangzhou 510006, Guangdong, Peoples R China
[7] Chongqing Univ, Sch Energy & Power Engn, Minist Educ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400044, Peoples R China
基金
美国食品与农业研究所; 中国国家自然科学基金;
关键词
Lignin; Catalytic pyrolysis; Activated carbon; Pretreatment; Phenol-rich bio-oil; RICH BIO-OIL; ACTIVATED CARBON; LIGNOCELLULOSIC BIOMASS; MICROWAVE PYROLYSIS; FUEL PRODUCTION; WASTE; TEMPERATURE; ALKALI; STRAW; RESIDUES;
D O I
10.1016/j.jclepro.2019.05.206
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel pathway to clean production of phenol-rich bio-oil and syngas by catalytic pyrolysis of pretreated lignin was investigated for the first time. The process integrated pretreatment and catalysis. The results revealed that the optimal condition for phenol selectivity (95.5%) from unpretreated lignin pyrolysis was achieved at a pyrolytic temperature of 550 degrees C with catalyst/lignin ratio of 0.7. Lignin pretreatment boosted the volatile production as well as syngas formation. A significant increase in the phenol concentration (from 0.6 to 7.0 mg/mL) for pretreated lignin was achieved at pretreated temperature of 50 degrees C for 60 min. During the deactivation test, the catalyst exhibited a benign catalytic performance for phenol selectivity after using four times. Further, the "phenol pool" and free radical were proposed to uncover the mechanism of phenol generation from catalytic conversion of pretreated lignin. These findings pave a new and clean route to produce high-purity phenol, which could ultimately advance the utilization of lignin through facile fix-bed catalytic pyrolysis technology. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 50 条
  • [1] In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin
    Fan, Liangliang
    Chen, Paul
    Zhou, Nan
    Liu, Shiyu
    Zhang, Yaning
    Liu, Yuhuan
    Wang, Yunpu
    Omar, Muhammad Mubashar
    Peng, Peng
    Addy, Min
    Cheng, Yanling
    Ruan, Roger
    BIORESOURCE TECHNOLOGY, 2018, 247 : 851 - 858
  • [2] Comparison between in-situ and ex-situ catalytic pyrolysis of sawdust for gas production
    Huo, Xiaodong
    Xiao, Jun
    Song, Min
    Zhu, Li
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 135 : 189 - 198
  • [3] Pressurized ex-situ catalytic co-pyrolysis of polyethylene and lignin: Efficient BTEX production and process mechanism analysis
    Ke, Linyao
    Wang, Yunpu
    Wu, Qiuhao
    Zhou, Nan
    Dai, Leilei
    Tian, Xiaojie
    Huang, Wanhao
    Peng, Yujie
    Xu, Jiaming
    Zou, Rongge
    Liu, Yuhuan
    Ruan, Roger
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [4] Kinetic modeling of ex-situ biomass catalytic pyrolysis
    Ipsakis, D.
    Heracleous, E.
    Gkinis, K.
    Stefanidis, S. D.
    Kalogiannis, K. G.
    Lappas, A. A.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (14) : 27362 - 27368
  • [5] Ex-situ combined with in-situ catalytic pyrolysis: A strategic approach to enhancing furans production from biomass
    Wang, Dechao
    Yang, Xinyu
    Huang, Haihan
    Wu, Kaiyue
    Jie, Zheng
    Yao, Quan
    Lin, Jian
    Huang, Yuanbo
    Liu, Peng
    Wang, Duo
    Ye, Yueyuan
    Zheng, Zhifeng
    RENEWABLE ENERGY, 2025, 244
  • [6] Ex-situ catalytic fast pyrolysis in a DCR - Effect of pyrolysis conditions
    Jarvis, Mark
    Olstad, Jessica
    Parent, Yves
    Magrini, Kimberly
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [7] Effects of steam to enhance the production of light olefins from ex-situ catalytic fast pyrolysis of biomass
    Hu, Changsong
    Liu, Chao
    Liu, Qingyu
    Zhang, Huiyan
    Wu, Shiliang
    Xiao, Rui
    Fuel Processing Technology, 2021, 210
  • [8] Effects of steam to enhance the production of light olefins from ex-situ catalytic fast pyrolysis of biomass
    Hu, Changsong
    Liu, Chao
    Liu, Qingyu
    Zhang, Huiyan
    Wu, Shiliang
    Xiao, Rui
    FUEL PROCESSING TECHNOLOGY, 2020, 210
  • [9] Sugarcane bagasse ex-situ catalytic fast pyrolysis for the production of Benzene, Toluene and Xylenes (BTX)
    Ghorbarmezhad, Payam
    Firouzabadi, Mohammadreza Dehghani
    Ghasemian, Ali
    de Wild, Paul J.
    Heeres, H. J.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 131 : 1 - 8
  • [10] Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon
    Pan, Ruming
    Martins, Marcio Ferreira
    Debenest, Gerald
    ENERGY, 2022, 248