A Dynamic Programming Setting for Functionally Graded Thick-Walled Cylinders

被引:15
|
作者
Abdalla, Hassan Mohamed Abdelalim [1 ]
Casagrande, Daniele [1 ]
De Bona, Francesco [1 ]
机构
[1] Univ Udine, Polytech Dept Engn & Architecture, Via Sci 206, I-33100 Udine, Italy
关键词
FG cylinder; optimal Young’ s modulus; dynamic programming; Pontryagin’ s principle; THERMOELASTIC ANALYSIS; COMPOSITE STRUCTURES; STRESSES; OPTIMIZATION;
D O I
10.3390/ma13183988
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Material property variation in non-homogeneous internally pressurized thick-walled cylinders is investigated within the context of dynamic programming theory. The material is assumed to be linear, elastic, isotropic, and functionally graded in the radial direction. Based on the plane stress hypothesis, a state space formulation is given and the optimal control problem is stated and solved by means of Pontryagin's Principle for different objective functionals. Optimal Young's modulus distribution is found to be piecewise linear along the radial domain. A brief digression on the possible existence of switching points is addressed. Finally, a numerical example is performed within a special class of derived optimal solutions, showing promising results in terms of equivalent stress reduction with respect to the most used variations in literature.
引用
收藏
页数:11
相关论文
共 50 条