Effective Hamiltonians for Discrete Time Crystals

被引:0
|
作者
Kozin, Valerii K. [1 ,2 ]
Kyriienko, Oleksandr [2 ,3 ,4 ,5 ]
机构
[1] Univ Iceland, Inst Sci, Dunhagi 3, IS-107 Reykjavik, Iceland
[2] ITMO Univ, Kronverkskiy Prospekt 49, St Petersburg 197101, Russia
[3] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England
[4] KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
[5] Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
基金
俄罗斯科学基金会;
关键词
D O I
10.1063/5.0011485
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the effective Hamiltonian for the 2T discrete time crystal (2T-DTC or DTC). This effective Hamiltonian is given by spin 1/2 many-body Hamiltonian which includes all-to-all coupling terms, thus being of infinite range. We describe the possible structure of the Hamiltonian, including many-body localized version which prevents thermalization. Finally, we show how the DTC melts when symmetry breaking terms are added.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] LOCALIZED STATES AND EFFECTIVE HAMILTONIANS IN PERTURBED CRYSTALS
    ZAK, J
    COMMUNICATIONS ON PHYSICS, 1976, 1 (03): : 73 - 79
  • [2] EFFECTIVE HAMILTONIANS AND WAVEFUNCTIONS FOR ELECTRONS IN DEFORMED CRYSTALS.
    Brown, R.A.
    1600, (36):
  • [3] EFFECTIVE HAMILTONIANS AND CLEBSCH-GORDAN COEFFICIENTS IN CRYSTALS
    BIRMAN, JL
    LEE, TK
    BERENSON, R
    PHYSICAL REVIEW B, 1976, 14 (02): : 318 - 321
  • [4] Discrete Time Crystals
    Else, Dominic V.
    Monroe, Christopher
    Nayak, Chetan
    Yao, Norman Y.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020, 2020, 11 (11): : 467 - 499
  • [5] EFFECTIVE-HAMILTONIANS AND WAVEFUNCTIONS FOR ELECTRONS IN DEFORMED-CRYSTALS
    BROWN, RA
    AUSTRALIAN JOURNAL OF PHYSICS, 1983, 36 (3A): : 321 - 337
  • [6] EFFECTIVE HAMILTONIANS
    JORGENSEN, F
    MOLECULAR PHYSICS, 1975, 29 (04) : 1137 - 1164
  • [7] Quantum Transport in Crystals: Effective Mass Theorem and K·P Hamiltonians
    Luigi Barletti
    Naoufel Ben Abdallah
    Communications in Mathematical Physics, 2011, 307 : 567 - 607
  • [8] Classical discrete time crystals
    Norman Y. Yao
    Chetan Nayak
    Leon Balents
    Michael P. Zaletel
    Nature Physics, 2020, 16 : 438 - 447
  • [9] Classical discrete time crystals
    Yao, Norman Y.
    Nayak, Chetan
    Balents, Leon
    Zaletel, Michael P.
    NATURE PHYSICS, 2020, 16 (04) : 438 - +
  • [10] HAMILTONIANS FOR DISCRETE DYNAMICS
    TOXVAERD, S
    PHYSICAL REVIEW E, 1994, 50 (03) : 2271 - 2274