A NONCONFORMING PENALTY METHOD FOR A TWO-DIMENSIONAL CURL-CURL PROBLEM

被引:9
|
作者
Brenner, Susanne C. [1 ,2 ]
Li, Fengyan [3 ]
Sung, Li-Yeng [2 ]
机构
[1] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
来源
基金
美国国家科学基金会;
关键词
Curl-curl problem; Maxwell equations; Maxwell eigenvalues; nonconforming finite element method; DISCONTINUOUS GALERKIN APPROXIMATION; HARMONIC MAXWELL EQUATIONS; MIXED FINITE-ELEMENTS; WEIGHTED REGULARIZATION; POLYHEDRAL DOMAINS; OPERATOR; CONVERGENCE;
D O I
10.1142/S0218202509003565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonconforming finite element method for a two-dimensional curl-curl problem is studied in this paper. It uses weakly continuous P(1) vector fields and penalizes the local divergence. Two consistency terms involving the jumps of the vector fields across element boundaries are also included to ensure the convergence of the scheme. Optimal convergence rates ( up to an arbitrary positive epsilon) in both the energy norm and the L(2) norm are established on graded meshes. This scheme can also be used in the computation of Maxwell eigenvalues without generating spurious eigenmodes. The theoretical results are confirmed by numerical experiments.
引用
收藏
页码:651 / 668
页数:18
相关论文
共 50 条
  • [1] A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem
    Brenner, S. C.
    Cui, J.
    Li, F.
    Sung, L. -Y.
    NUMERISCHE MATHEMATIK, 2008, 109 (04) : 509 - 533
  • [2] A locally divergence-free interior penalty method for two-dimensional curl-curl problems
    Brenner, Susanne C.
    Li, Fengyan
    Sung, Li-Yeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1190 - 1211
  • [3] A nonconforming finite element method for a two-dimensional curl–curl and grad-div problem
    S. C. Brenner
    J. Cui
    F. Li
    L.-Y. Sung
    Numerische Mathematik, 2008, 109 : 509 - 533
  • [4] Semiclassical states for the curl-curl problem
    Bieganowski, Bartosz
    Konysz, Adam
    Mederski, Jaroslaw
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 255
  • [5] The curl-curl conforming virtual element method for the quad-curl problem
    Zhao, Jikun
    Zhang, Bei
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (08): : 1659 - 1690
  • [6] The Brezis-Nirenberg problem for the curl-curl operator
    Mederski, Jaroslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (05) : 1345 - 1380
  • [7] A staggered discontinuous Galerkin method for the curl-curl operator
    Chung, Eric T.
    Lee, Chak Shing
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (03) : 1241 - 1265
  • [8] Ground states of a nonlinear curl-curl problem in cylindrically symmetric media
    Bartsch, Thomas
    Dohnal, Tomas
    Plum, Michael
    Reichel, Wolfgang
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (05):
  • [9] Multiple Solutions to a Nonlinear Curl-Curl Problem in R3
    Mederski, Jaroslaw
    Schino, Jacopo
    Szulkin, Andrzej
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (01) : 253 - 288
  • [10] Ground states of a nonlinear curl-curl problem in cylindrically symmetric media
    Thomas Bartsch
    Tomáš Dohnal
    Michael Plum
    Wolfgang Reichel
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23