Generalized Schur Numbers for x1 + x2 + c=3x3

被引:0
|
作者
Kezdy, Andre E. [1 ]
Snevily, Hunter S. [2 ]
White, Susan C. [1 ]
机构
[1] Univ Louisville, Dept Math, Louisville, KY 40292 USA
[2] Univ Idaho, Dept Math, Moscow, ID 83844 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r(c) be the least positive integer n such that every two coloring of the integers 1,..., n contains a monochromatic solution to x(1)+x(2)+c = 3x(3).Verifying a conjecture of Martinelli and Schaal, we prove that r(c) = inverted right perpendicular 2inverted right perpendicular2 + c/3inverterted left perpendicular + c/3inverterted left perpendicular for all c >= 13, and r(c) = inverted right perpendicular 3inverted right perpendicular3-c/2inverterted left perpendicular - c/2 inverterted left perpendicular, for all c <= -4.
引用
收藏
页数:13
相关论文
共 50 条