Fusion Method Combining Ground-Level Observations with Chemical Transport Model Predictions Using an Ensemble Deep Learning Framework: Application in China to Estimate Spatiotemporally-Resolved PM2.5 Exposure Fields in 2014-2017

被引:44
|
作者
Lyu, Baolei [1 ]
Hu, Yongtao [2 ]
Zhang, Wenxian [3 ]
Du, Yunsong [4 ]
Luo, Bin [4 ]
Sun, Xiaoling [5 ]
Sun, Zhe [6 ]
Deng, Zhu [6 ]
Wang, Xiaojiang [1 ]
Liu, Jun [1 ]
Wang, Xuesong [7 ]
Russell, Armistead G. [2 ]
机构
[1] Huayun Sounding Meteorol Technol Co Ltd, Beijing 100081, Peoples R China
[2] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[3] Hangzhou AiMa Technol, Hangzhou 311121, Zhejiang, Peoples R China
[4] Sichuan Environm Monitoring Ctr, Chengdu 610091, Sichuan, Peoples R China
[5] Meteorol Bur Shenzhen Municipal, Shenzhen 518040, Guangdong, Peoples R China
[6] Tsinghua Univ, Dept Earth Syst Sci, Beijing 100084, Peoples R China
[7] Peking Univ, Coll Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100871, Peoples R China
基金
国家重点研发计划;
关键词
AIR-POLLUTION; EMISSION INVENTORY; AMBIENT PM2.5; KM RESOLUTION; MODIS AOD; POLLUTANTS; COMPONENTS; MORTALITY; IMPACTS; REGION;
D O I
10.1021/acs.est.9b01117
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric chemical transport models (CTMs) have been widely used to simulate spatiotemporally resolved PM2.5 concentrations. However, CTM results are usually prone to bias and errors. In this study, we improved the accuracy of PM2.5 predictions by developing an ensemble deep learning framework to fuse model simulations with ground-level observations. The framework encompasses four machine-learning models, i.e., general linear model, fully connected neural network, random forest, and gradient boosting machine, and combines them by stacking approach. This framework is applied to PM2.5 concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for China from 2014 to 2017, which has complete spatial coverage over the entirety of China at a 12-km resolution, with no sampling biases. The fused PM2.5 concentration fields were evaluated by comparing with an independent network of observations. The R-2 values increased from 0.39 to 0.64, and the RMSE values decreased from 33.7 mu g/m(3) to 24.8 mu g/m(3). According to the fused data, the percentage of Chinese population residing under the level II National Ambient Air Quality Standards of 35 mu g/m(3) for PM2.5 has increased from 46.5% in 2014 to 61.7% in 2017. The method is readily adapted to utilize near-real-time observations for operational analyses and forecasting of pollutant concentrations and can be extended to provide source apportionment forecasts as well.
引用
收藏
页码:7306 / 7315
页数:10
相关论文
empty
未找到相关数据