A -statistic approach for a high-dimensional two-sample mean testing problem under non-normality and Behrens-Fisher setting

被引:0
|
作者
Ahmad, M. Rauf [1 ,2 ]
机构
[1] Uppsala Univ, Dept Stat, S-75120 Uppsala, Sweden
[2] Swedish Univ Agr Sci, Dept Energy & Technol, S-75651 Uppsala, Sweden
关键词
High-dimensional multivariate inference; Box's approximation; Behrens-Fisher setting; Degenerate U-statistics; U-STATISTICS; LIMIT-THEOREMS;
D O I
10.1007/s10463-013-0404-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A two-sample test statistic is presented for testing the equality of mean vectors when the dimension, , exceeds the sample sizes, , and the distributions are not necessarily normal. Under mild assumptions on the traces of the covariance matrices, the statistic is shown to be asymptotically Chi-square distributed when . However, the validity of the test statistic when is fixed but large, including , and when the distributions are multivariate normal, is shown as special cases. This two-sample Chi-square approximation helps us establish the validity of Box's approximation for high-dimensional and non-normal data to a two-sample setup, valid even under Behrens-Fisher setting. The limiting Chi-square distribution of the statistic is obtained using the asymptotic theory of degenerate -statistics, and using a result from classical asymptotic theory, it is further extended to an approximate normal distribution. Both independent and paired-sample cases are considered.
引用
收藏
页码:33 / 61
页数:29
相关论文
共 50 条
  • [1] TWO-SAMPLE BEHRENS-FISHER PROBLEM FOR HIGH-DIMENSIONAL DATA
    Feng, Long
    Zou, Changliang
    Wang, Zhaojun
    Zhu, Lixing
    STATISTICA SINICA, 2015, 25 (04) : 1297 - 1312
  • [2] An approximate randomization test for the high-dimensional two-sample Behrens-Fisher problem under arbitrary covariances
    Wang, Rui
    Xu, Wangli
    BIOMETRIKA, 2022, 109 (04) : 1117 - 1132
  • [3] Two-sample Behrens-Fisher problems for high-dimensional data: A normal reference approach
    Zhang, Jin-Ting
    Zhou, Bu
    Guo, Jia
    Zhu, Tianming
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 213 : 142 - 161
  • [4] Testing High-Dimensional Nonparametric Behrens-Fisher Problem
    Zhen Meng
    Na Li
    Ao Yuan
    Journal of Systems Science and Complexity, 2022, 35 : 1098 - 1115
  • [5] Testing High-Dimensional Nonparametric Behrens-Fisher Problem
    Meng, Zhen
    Li, Na
    Yuan, Ao
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (03) : 1098 - 1115
  • [6] Testing High-Dimensional Nonparametric Behrens-Fisher Problem
    MENG Zhen
    LI Na
    YUAN Ao
    JournalofSystemsScience&Complexity, 2022, 35 (03) : 1098 - 1115
  • [7] On the two-sample behrens-fisher problem for functional data
    Zhang J.-T.
    Liang X.
    Xiao S.
    Journal of Statistical Theory and Practice, 2010, 4 (4) : 571 - 587
  • [8] On the k-sample Behrens-Fisher problem for high-dimensional data
    JinTing Zhang
    JinFeng Xu
    Science in China Series A: Mathematics, 2009, 52 : 1285 - 1304
  • [9] On the k-sample Behrens-Fisher problem for high-dimensional data
    ZHANG JinTing & XU JinFeng Department of Statistics and Applied Probability
    Science China Mathematics, 2009, (06) : 1285 - 1304
  • [10] On the k-sample Behrens-Fisher problem for high-dimensional data
    Zhang JinTing
    Xu JinFeng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (06): : 1285 - 1304