Two-Dimensional Z2 Lattice Gauge Theory on a Near-Term Quantum Simulator: Variational Quantum Optimization, Confinement, and Topological Order

被引:19
|
作者
Lumia, Luca [1 ]
Torta, Pietro [1 ]
Mbeng, Glen B. [2 ]
Santoro, Giuseppe E. [1 ,3 ,4 ]
Ercolessi, Elisa [5 ,6 ]
Burrello, Michele [7 ,8 ]
Wauters, Matteo M. [7 ,8 ]
机构
[1] SISSA, Via Bonomea 265, I-34135 Trieste, Italy
[2] Univ Innsbruck, Technikerstr 21 A, A-6020 Innsbruck, Austria
[3] Abdus Salaam Int Ctr Theoret Phys, POB 586, I-34014 Trieste, Italy
[4] CNR IOM Democritos Natl Simulat Ctr, Via Bonomea 265, I-34136 Trieste, Italy
[5] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy
[6] Ist Nazl Fis Nucl, Via Irnerio 46, I-40126 Bologna, Italy
[7] Univ Copenhagen, Niels Bohr Int Acad, Niels Bohr Inst, Univ Pk 5, DK-2100 Copenhagen, Denmark
[8] Univ Copenhagen, Ctr Quantum Devices, Niels Bohr Inst, Univ Pk 5, DK-2100 Copenhagen, Denmark
来源
PRX QUANTUM | 2022年 / 3卷 / 02期
基金
欧盟地平线“2020”; 奥地利科学基金会;
关键词
DISORDER; STATES;
D O I
10.1103/PRXQuantum.3.020320
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an implementation of a two-dimensional Z2 lattice gauge theory model on a shallow quan-tum circuit, involving a number of single-and two-qubit gates comparable to what can be achieved with present-day and near-future technologies. The ground-state preparation is numerically analyzed on a small lattice with a variational quantum algorithm, which requires a small number of parameters to reach high fidelities and can be efficiently scaled up on larger systems. Despite the reduced size of the lattice we consider, a transition between confined and deconfined regimes can be detected by measuring expectation values of Wilson loop operators or the topological entropy. Moreover, if periodic boundary conditions are implemented, the same optimal solution is transferable among all four different topological sectors, without any need for further optimization on the variational parameters. Our work shows that variational quantum algorithms provide a useful technique to be added in the growing toolbox for digital simulations of lattice gauge theories.
引用
收藏
页数:22
相关论文
共 31 条
  • [1] Confinement in a Z2 lattice gauge theory on a quantum computer
    Mildenberger, Julius
    Mruczkiewicz, Wojciech
    Halimeh, Jad C.
    Jiang, Zhang
    Hauke, Philipp
    NATURE PHYSICS, 2025, 21 (02) : 312 - 317
  • [2] Simulating Z2 lattice gauge theory with the variational quantum thermalizer
    Fromm, Michael
    Philipsen, Owe
    Spannowsky, Michael
    Winterowd, Christopher
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [3] Two-dimensional spin liquids with Z2 topological order in an array of quantum wires
    Patel, Aavishkar A.
    Chowdhury, Debanjan
    PHYSICAL REVIEW B, 2016, 94 (19)
  • [4] Simulating Z2 lattice gauge theory on a quantum computer
    Charles, Clement
    Gustafson, Erik J.
    Hardt, Elizabeth
    Herren, Florian
    Hogan, Norman
    Lamm, Henry
    Starecheski, Sara
    Van de Water, Roth S.
    Wagman, Michael L.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [5] Floquet-Rydberg quantum simulator for confinement in Z2 gauge theories
    Domanti, Enrico C.
    Zappala, Dario
    Bermudez, Alejandro
    Amico, Luigi
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [6] Quantum simulation of Z2 lattice gauge theory with minimal resources
    Irmejs, Reinis
    Banuls, Mari-Carmen
    Cirac, J. Ignacio
    PHYSICAL REVIEW D, 2023, 108 (07)
  • [7] Confinement induced frustration in a one-dimensional Z2 lattice gauge theory
    Kebric, Matjaz
    Borla, Umberto
    Schollwoeck, Ulrich
    Moroz, Sergej
    Barbiero, Luca
    Grusdt, Fabian
    NEW JOURNAL OF PHYSICS, 2023, 25 (01):
  • [8] Quantum phases of two-dimensional Z2 gauge theory coupled to single-component fermion matter
    Borla, Umberto
    Jeevanesan, Bhilahari
    Pollmann, Frank
    Moroz, Sergej
    PHYSICAL REVIEW B, 2022, 105 (07)
  • [9] QUASI-TOPOLOGICAL QUANTUM FIELD THEORIES AND Z2 LATTICE GAUGE THEORIES
    Ferreira, Miguel J. B.
    Pereira, Victor A.
    Teotonio-Sobrinho, Paulo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (23):
  • [10] Topological phase transition on the edge of two-dimensional Z2 topological order
    Chen, Wei-Qiang
    Jian, Chao-Ming
    Kong, Liang
    You, Yi-Zhuang
    Zheng, Hao
    PHYSICAL REVIEW B, 2020, 102 (04)