AptaTRACE Elucidates RNA Sequence-Structure Motifs from Selection Trends in HT-SELEX Experiments

被引:46
|
作者
Phuong Dao [1 ]
Hoinka, Jan [1 ]
Takahashi, Mayumi [2 ]
Zhou, Jiehua [2 ]
Ho, Michelle [2 ]
Wang, Yijie [1 ]
Costa, Fabrizio [3 ]
Rossi, John J. [2 ]
Backofen, Rolf [3 ]
Burnett, John [2 ]
Przytycka, Teresa M. [1 ]
机构
[1] Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA
[2] City Hope Natl Med Ctr, Beckman Res Inst, Dept Mol & Cellular Biol, Duarte, CA 91010 USA
[3] Univ Freiburg, Dept Comp Sci, Bioinformat Grp, D-79110 Freiburg, Germany
关键词
FACTOR-BINDING SPECIFICITIES; IN-VITRO SELECTION; NEXT-GENERATION; APTAMERS; DISCOVERY; LIGANDS; SITES;
D O I
10.1016/j.cels.2016.07.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aptamers, short RNA or DNA molecules that bind distinct targets with high affinity and specificity, can be identified using high-throughput systematic evolution of ligands by exponential enrichment (HT-SELEX), but scalable analytic tools for understanding sequence-function relationships from diverse HT-SELEX data are not available. Here we present AptaTRACE, a computational approach that leverages the experimental design of the HT-SELEX protocol, RNA secondary structure, and the potential presence of many secondary motifs to identify sequence-structure motifs that show a signature of selection. We apply AptaTRACE to identify nine motifs in C-C chemokine receptor type 7 targeted by aptamers in an in vitro cell-SELEX experiment. We experimentally validate two aptamers whose binding required both sequence and structural features. AptaTRACE can identify low-abundance motifs, and we show through simulations that, because of this, it could lower HT-SELEX cost and time by reducing the number of selection cycles required.
引用
收藏
页码:62 / 70
页数:9
相关论文
共 14 条
  • [1] RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information
    Ishida, Ryoga
    Adachi, Tatsuo
    Yokota, Aya
    Yoshihara, Hidehito
    Aoki, Kazuteru
    Nakamura, Yoshikazu
    Hamada, Michiaki
    NUCLEIC ACIDS RESEARCH, 2020, 48 (14)
  • [2] Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers
    Hoinka, Jan
    Zotenko, Elena
    Friedman, Adam
    Sauna, Zuben E.
    Przytycka, Teresa M.
    BIOINFORMATICS, 2012, 28 (12) : I215 - I223
  • [3] APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data
    Caroli, J.
    Taccioli, C.
    De La Fuente, A.
    Serafini, P.
    Bicciato, S.
    BIOINFORMATICS, 2016, 32 (02) : 161 - 164
  • [4] Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15
    Shermin Pei
    Betty L. Slinger
    Michelle M. Meyer
    BMC Bioinformatics, 18
  • [5] Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15
    Pei, Shermin
    Slinger, Betty L.
    Meyer, Michelle M.
    BMC BIOINFORMATICS, 2017, 18
  • [6] Matching and significance evaluation of combined sequence-structure motifs in RNA
    Meyer, C
    Giegerich, R
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2002, 216 : 193 - 216
  • [7] RNANetMotif: Identifying sequence-structure RNA network motifs in RNA-protein binding sites
    Ma, Hongli
    Wen, Han
    Xue, Zhiyuan
    Li, Guojun
    Zhang, Zhaolei
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (07)
  • [8] RNAelem: an algorithm for discovering sequence-structure motifs in RNA bound by RNA-binding proteins
    Miyake, Hiroshi
    Kawaguchi, Risa Karakida
    Kiryu, Hisanori
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [9] Discovering sequence-structure motifs from protein segments and two applications
    Tang, T
    Xu, JB
    Li, M
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2005, 2005, : 370 - 381
  • [10] ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data
    Heller, David
    Krestel, Ralf
    Ohler, Uwe
    Vingron, Martin
    Marsico, Annalisa
    NUCLEIC ACIDS RESEARCH, 2017, 45 (19) : 11004 - 11018