The Alon-Tarsi conjecture: A perspective on the main results

被引:3
|
作者
Friedman, Benjamin [1 ]
McGuinness, Sean [1 ]
机构
[1] Thompson Rivers Univ, Kamloops, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Latin square; Conjecture; Prime; Basis; Isotopy; LATIN SQUARES; NUMBER; EVEN; ROTA;
D O I
10.1016/j.disc.2019.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Alon-Tarsi conjecture states that if n is even, then the sum of the signs of the Latin squares of order n is non-zero (Alon and Tarsi, 1992). The conjecture has been proven in the cases n = p + 1 (Drisko, 1997), and n = p 1 (Glynn, 2010), where p is an odd prime. This paper is intended to be a concise and largely self-contained account of these results, along with streamlined, and in some cases, original proofs that should be readily accessible to a mathematician with a background in combinatorics. We also discuss the relation between the Alon-Tarsi conjecture and Rota's basis conjecture (Huang and Rota, 1994), and present some related problems, such as Zappa's extension of the Alon-Tarsi conjecture (Zappa, 1997), and Drisko's proof of the extended conjecture for n = p (Drisko, 1998). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:2234 / 2253
页数:20
相关论文
共 50 条
  • [1] FORMULAE FOR THE ALON-TARSI CONJECTURE
    Stones, Douglas S.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (01) : 65 - 70
  • [2] HOW NOT TO PROVE THE ALON-TARSI CONJECTURE
    Stones, Douglas S.
    Wanless, Ian M.
    NAGOYA MATHEMATICAL JOURNAL, 2012, 205 : 1 - 24
  • [3] On Extensions of the Alon-Tarsi Latin Square Conjecture
    Kotlar, Daniel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [4] The Cayley determinant of the determinant tensor and the Alon-Tarsi conjecture
    Zappa, P
    ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (01) : 31 - 44
  • [5] Alon-Tarsi Number and Modulo Alon-Tarsi Number of Signed Graphs
    Wang, Wei
    Qian, Jianguo
    Abe, Toshiki
    GRAPHS AND COMBINATORICS, 2019, 35 (05) : 1051 - 1064
  • [6] The Alon-Tarsi number of a toroidal grid
    Li, Zhiguo
    Shao, Zeling
    Petrov, Fedor
    Gordeev, Alexey
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 111
  • [7] The Alon-Tarsi number of planar graphs
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 354 - 358
  • [8] Brooks' Theorem via the Alon-Tarsi Theorem
    Hladky, Jan
    Kral', Daniel
    Schauz, Uwe
    DISCRETE MATHEMATICS, 2010, 310 (23) : 3426 - 3428
  • [9] On two generalizations of the Alon-Tarsi polynomial method
    Hefetz, Dan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2011, 101 (06) : 403 - 414
  • [10] A note on Alon-Tarsi number of Halin graphs
    Lin, Dazhi
    Wang, Tao
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 297 - 299