Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates - An extension of Hojman theorem

被引:8
|
作者
Qiao, YF [1 ]
Zhao, SH
Li, RJ
机构
[1] Zhejiang Inst Sci & Technol, Dept Mech Engn & Automat, Hangzhou 310027, Peoples R China
[2] Laiyamg Agr Coll, Fundamental Courses Sect, Liayang 265204, Peoples R China
[3] NE Agr Univ, Coll Engn, Harbin 150030, Peoples R China
关键词
quasi-coordinate; holonomic mechanical system; Lie symmetry; non Noether conserved quantity; Hojman theorem;
D O I
10.7498/aps.53.2035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the Lie symmetry under infinitesimal transformations in which the time in not variable, a new conserved quantity of holonomic mechanical systems in terms of quasi-coordinates is studied. The differential equations of motion of the systems are established. Determining equations of Lie symmetry under infinitesimal transformations are given. The Hojman theorem is generalized. Finally, an example is given to illustrate the application of the results.
引用
收藏
页码:2035 / 2039
页数:5
相关论文
共 17 条
  • [1] A NEW CONSERVATION LAW CONSTRUCTED WITHOUT USING EITHER LAGRANGIANS OR HAMILTONIANS
    HOJMAN, SA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07): : L291 - L295
  • [2] Li YC, 2001, CHINESE PHYS, V10, P376, DOI 10.1088/1009-1963/10/5/302
  • [3] LI ZP, 1993, CLASSICAL QUANTAL DY, P1
  • [4] A set of Lie symmetrical non-Noether conserved quantity for the relativistic Hamiltonian systems
    Luo, SK
    Jia, LQ
    Cai, JL
    [J]. CHINESE PHYSICS, 2003, 12 (08): : 841 - 845
  • [5] Lie symmetry and the conserved quantity of a generalized Hamiltonian system
    Mei, FX
    [J]. ACTA PHYSICA SINICA, 2003, 52 (05) : 1048 - 1050
  • [6] Lie symmetries and conserved quantities of first order Lagrange systems
    Mei, FX
    Shang, M
    [J]. ACTA PHYSICA SINICA, 2000, 49 (10) : 1901 - 1903
  • [7] Mei FX, 1999, APPL LIE GROUPS LIE, P90
  • [8] Mei FX., 2000, Appl. Mech. Rev, V53, P283, DOI [10.1115/1.3097331, DOI 10.1115/1.3097331]
  • [9] Comment on a theorem of Hojman and its generalizations
    Pillay, T
    Leach, PGL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21): : 6999 - 7002
  • [10] Qiao YF, 2002, CHINESE PHYS, V11, P859, DOI 10.1088/1009-1963/11/9/301