Fast quantum state transfer in hybrid quantum dot-metal nanoparticle systems by shaping ultrafast laser pulses

被引:20
|
作者
Qi, Yihong [1 ,2 ]
Shu, Chuan-Cun [3 ]
Dong, Daoyi [2 ]
Petersen, Ian R. [4 ]
Jacobs, Kurt [5 ,6 ]
Gong, Shangqing [1 ]
机构
[1] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[3] Cent S Univ, Sch Phys & Elect, Inst Super Micro Struct & Ultrafast Proc Adv Mat, Changsha 410083, Hunan, Peoples R China
[4] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2602, Australia
[5] US Army Res Lab, Computat & Informat Sci Directorate, Adelphi, MD 20783 USA
[6] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
quantum control; quantum dot; quantum optimal control; metal nanoparticle systems; DYNAMICS;
D O I
10.1088/1361-6463/ab33eb
中图分类号
O59 [应用物理学];
学科分类号
摘要
Semiconductor quantum dots (SQDs) have relatively short decoherence times, but have the potential for extremely fast operations implemented by femto-second laser pulses, making them a possible candidate for very high speed quantum information processing. These operations are enhanced by positioning a metal nano-particle (MNP) near to the SQD which significantly increases the strength of electric fields applied to it. Here we consider an SQD with three-levels in a Lambda configuration, and explore the requirements for implementing a transfer from one ground state to the other via the upper level. A recently developed optimization method allows us to fix the energy of the laser pulse while satisfying the requirement that the pulse has no DC component. We show that the use of carefully shaped pulses significantly reduces the required laser power. We also determine the dependence of the pulse power on the distance between the SQD and the MNP, and explore the degree to which the process follows the pulse area theorem for first-order perturbative processes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hybrid Quantum Dot-Metal Nanoparticle Systems: Connecting the Dots
    Artuso, R. D.
    Bryant, G. W.
    ACTA PHYSICA POLONICA A, 2012, 122 (02) : 289 - 293
  • [2] Hybrid Quantum Dot-Metal Nanoparticle Systems: Connecting the Dots
    Artuso, Ryan D.
    Bryant, Garnett W.
    METAMATERIALS VII, 2012, 8423
  • [3] Photon Statistics of a Hybrid Quantum Dot-Metal Nanoparticle Cluster
    M. Bagheri Harouni
    M. Rafieian Najaf Abadi
    Plasmonics, 2017, 12 : 1 - 8
  • [4] Photon Statistics of a Hybrid Quantum Dot-Metal Nanoparticle Cluster
    Harouni, M. Bagheri
    Abadi, M. Rafieian Najaf
    PLASMONICS, 2017, 12 (01) : 1 - 8
  • [5] Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle
    Ge, Rong-Chun
    Van Vlack, C.
    Yao, P.
    Young, Jeff F.
    Hughes, S.
    PHYSICAL REVIEW B, 2013, 87 (20)
  • [6] Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
    He, Yong
    Zhu, Ka-Di
    SENSORS, 2017, 17 (06)
  • [7] Coulomb effect in hybrid double quantum dot-metal nanoparticle systems considering the wetting layer
    Nasser, Nour A.
    Al-Khursan, Amin H.
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [8] Coulomb effect in hybrid double quantum dot-metal nanoparticle systems considering the wetting layer
    Nour A. Nasser
    Amin H. Al-Khursan
    EPJ Quantum Technology, 2024, 11
  • [9] Double quantum dot-metal nanoparticle systems under strong coupling
    Akram, Haneen
    Abdullah, M.
    Al-Khursan, Amin H.
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (04)
  • [10] Using Local Fields to Tailor Hybrid Quantum Dot-Metal Nanoparticle Systems: Connecting the Dots
    Bryant, Garnett W.
    Artuso, Ryan D.
    Garcia-Etxarri, Aitzol
    Aizpurua, Javier
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,