An arithmetic-geometric mean inequality for products of three matrices

被引:10
|
作者
Israel, Arie [1 ]
Krahmer, Felix [2 ]
Ward, Rachel [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Tech Univ Munich, Unit Appl Numer Anal M15, Dept Math, D-80290 Munich, Germany
关键词
Arithmetic-geometric mean inequality; Linear algebra; Norm inequalities; OPERATORS;
D O I
10.1016/j.laa.2015.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the following noncommutative arithmetic geometric mean inequality: Given positive-semidefinite matrices A1,..., A(n), the following holds for each integer m <= n: 1/n(m) Sigma(j1,j2,..., jm=1) (n) vertical bar vertical bar vertical bar A(j1)A(j2) ... A(jm)vertical bar vertical bar vertical bar (n-m)!/n ! Sigma(j1,j2,..., jm=1) all distinct vertical bar vertical bar vertical bar A(j1)A(j2) ... A(jm)vertical bar vertical bar vertical bar, where vertical bar vertical bar vertical bar .vertical bar vertical bar vertical bar denotes a unitarily invariant norm, including the operator norm and Schatten p-norms as special cases. While this inequality in full generality remains a conjecture, we prove that the inequality holds for products of up to three matrices, m <= 3. The proofs for m = 1,2 are straightforward; to derive the proof for m = 3, we appeal to a variant of the classic Araki-Lieb-Thirring inequality for permutations of matrix products. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    LUCHT, LG
    AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (08): : 739 - 740
  • [2] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    Hassani, Mehdi
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 453 - 456
  • [3] ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    SCHMEICH.EF
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (07): : 782 - &
  • [4] On the arithmetic-geometric mean inequality
    Kwon, EG
    Shon, KH
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 233 - 235
  • [5] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    Sababheh, Mohammad
    Furuichi, Shigeru
    Heydarbeygi, Zahra
    Moradi, Hamid Reza
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1255 - 1266
  • [6] Extensions of interpolation between the arithmetic-geometric mean inequality for matrices
    Bakherad, Mojtaba
    Lashkaripour, Rahmatollah
    Hajmohamadi, Monire
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [7] Extensions of interpolation between the arithmetic-geometric mean inequality for matrices
    Mojtaba Bakherad
    Rahmatollah Lashkaripour
    Monire Hajmohamadi
    Journal of Inequalities and Applications, 2017
  • [8] AN APPLICATION OF ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    SPITAL, S
    MAAS, R
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 909 - &
  • [9] BEHOLD - THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    EDDY, RH
    COLLEGE MATHEMATICS JOURNAL, 1985, 16 (03): : 208 - 208
  • [10] A PROOF OF ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    AKERBERG, B
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (09): : 997 - &