New Approach for Automatic and Patient-Specific Evaluation of Multi-Modality Deformable Image Registration Accuracy as Tested On Halcyon's Megavoltage Cone Beam CT System

被引:0
|
作者
Huang, Y. [1 ]
Zhang, Y. [1 ]
机构
[1] Peking Univ, Canc Hosp & Inst, Minist Educ Beijing, Key Lab Carcinogenesis & Translat Res, Beijing 100142, Peoples R China
基金
北京市自然科学基金;
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TU-J345-Ge
引用
收藏
页码:E384 / E384
页数:1
相关论文
共 9 条
  • [1] Accuracy of Multi-Modality Deformable Image Registration with MR and CT in MR-IGRT System
    Sakasai, T.
    Kuwahara, J.
    Okamoto, H.
    Nishioka, S.
    Miura, Y.
    Igaki, H.
    Abe, Y.
    Itami, J.
    MEDICAL PHYSICS, 2018, 45 (06) : E600 - E600
  • [2] The Potential for Patient-Specific, Automated Evaluation of Deformable Image Registration Accuracy
    Kirby, N.
    Morin, O.
    Nie, K.
    Chen, J.
    Pouliot, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 : S878 - S878
  • [3] An automated patient-specific and quantitative approach for deformable image registration evaluation
    Kierkels, R. G.
    Brouwer, C. L.
    Steenbakkers, R. J.
    Bijl, H. P.
    Langendijk, J. A.
    Sijtsema, N. M.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S29 - S30
  • [4] Evaluation of Multi-Modality (CT/MR/PET) Image Registration Accuracy in Radiotherapy Planning
    Sethi, A.
    Rusu, I.
    Surucu, M.
    Halama, J.
    MEDICAL PHYSICS, 2012, 39 (06) : 3674 - 3675
  • [5] EVALUATION OF THE AUTOMATIC IMAGE REGISTRATION FEATURES OF A KV CONE-BEAM CT IMAGING SYSTEM
    Janvary, L.
    Jansen, N.
    Mathot, M.
    Lenaerts, F.
    Martinive, P.
    Coucke, P.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S386 - S386
  • [6] Accuracy and Reproducibility of Automatic versus Manual Registration Using a Cone-Beam CT Image Guidance System
    Dalgorf, Dustin
    Daly, Michael
    Chan, Harley
    Siewerdsen, Jeffrey
    Irish, Jonathan
    JOURNAL OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2011, 40 (01): : 75 - 80
  • [7] Evaluation of the Performance of a New Deformable Image Registration Algorithms Based On Motion Modeling for Cone-Beam CT Images
    Alsbou, N.
    Ahmad, S.
    Ali, I.
    MEDICAL PHYSICS, 2017, 44 (06) : 3212 - 3213
  • [8] An adversarial machine learning based approach and biomechanically-guided validation for improving deformable image registration accuracy between a planning CT and cone-beam CT for adaptive prostate radiotherapy applications
    Santhanam, Anand P.
    Lauria, Michael
    Stiehl, Brad
    Elliott, Daniel
    Seshan, Saty
    Hsieh, Scott
    Cao, Minsong
    Low, Daniel
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [9] Evaluation of a System for High-Accuracy 3D Image-Based Registration of Endoscopic Video to C-Arm Cone-Beam CT for Image-Guided Skull Base Surgery
    Mirota, Daniel J.
    Uneri, Ali
    Schafer, Sebastian
    Nithiananthan, Sajendra
    Reh, Douglas D.
    Ishii, Masaru
    Gallia, Gary L.
    Taylor, Russell H.
    Hager, Gregory D.
    Siewerdsen, Jeffrey H.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (07) : 1215 - 1226