Highly efficient adsorbent design using a Cu-BTC/CuO/ carbon fiber paper composite for high CH4/N2 selectivity

被引:14
|
作者
Qu, Zhi-Guo [1 ]
Wang, Hui [1 ]
Zhang, Wen [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermo Fluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Shaanxi, Peoples R China
来源
RSC ADVANCES | 2017年 / 7卷 / 23期
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; COMPARATIVE MOLECULAR SIMULATION; GRAPHITE OXIDE COMPOSITES; ROOM-TEMPERATURE; THERMAL-CONDUCTIVITY; METHANE STORAGE; GRAPHENE OXIDE; CO2; ADSORPTION; SEPARATION; BTC;
D O I
10.1039/c6ra28124a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A highly efficient adsorbent containing a Cu-BTC/CuO/CFP composite with a microporous copper benzene-1,3,5-tricarboxylate/CuO coating on a macroporous carbon fiber paper was designed via atomic layer deposition with the synthesis time of 6 h. The existing moderate CuO in Cu-BTC/CuO/CFP forms micropores between CuO and Cu-BTC and CuO and CFP to promote selectivity of CH4/N-2. The effects of synthesis time and CuO content on the selectivity of CH4/N-2 and effective thermal conductivity were experimentally investigated. The pressure drop and adsorption rate of the adsorption bed and temperature response of the desorption bed were numerically predicted. The selectivity of equimolar CH4/N-2 for CuBTC/CuO/CFP (0.30 : 0.13 : 0.57) (6 h) is 2.15-2.65 times higher than that of pure Cu-BTC. The Cu-BTC/CuO/CFP material has higher effective thermal conductivity, lower pressure drop, higher adsorption rate, and better temperature uniformity compared to pure Cu-BTC powder in the adsorption bed.
引用
收藏
页码:14206 / 14218
页数:13
相关论文
共 50 条
  • [1] Preparation of Cu-BTC MOF extrudates for CH4 separation from CH4/N2 gas mixture
    Singh, Narendra
    Dalakoti, Suman
    Wamba, Honore N.
    Chauhan, Rekha
    Divekar, Swapnil
    Dasgupta, Soumen
    Aarti
    MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 360
  • [2] Intensification of helium separation from CH4 and N2 by size-reduced Cu-BTC particles in Matrimid matrix
    Akbari, Ali
    Karimi-Sabet, Javad
    Ghoreishi, Seyyed Mohammad
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 251
  • [3] Improving CO2/CH4 and CO2/N2 adsorptive selectivity of Cu-BTC and MOF-derived nanoporous carbon by modification with nitrogen-containing groups
    Salehi, Samira
    Anbia, Mansoor
    Razavi, Fatemeh
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2020, 39 (01)
  • [4] Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2
    Li, Junmin
    Yang, Jiangfeng
    Li, Libo
    Li, Jinping
    JOURNAL OF ENERGY CHEMISTRY, 2014, 23 (04) : 453 - 460
  • [5] Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2
    Junmin Li
    Jiangfeng Yang
    Libo Li
    Jinping Li
    Journal of Energy Chemistry, 2014, (04) : 453 - 460
  • [6] Multicomponent adsorption of biogas compositions containing CO2, CH4 and N2 on Maxsorb and Cu-BTC using extended Langmuir and Doong–Yang models
    Luis Fernando Gomez
    Renju Zacharia
    Pierre Bénard
    Richard Chahine
    Adsorption, 2015, 21 : 433 - 443
  • [7] CO2 and CH4 Separation by Adsorption Using Cu-BTC Metal-Organic Framework
    Hamon, Lomig
    Jolimaitre, Elsa
    Pirngruber, Gerhard D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (16) : 7497 - 7503
  • [8] High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO2/N2 and CH4/N2 separation
    Siang Chen
    Wenling Wu
    Zhaoyang Niu
    Deqi Kong
    Wenbin Li
    Zhongli Tang
    Donghui Zhang
    ChineseJournalofChemicalEngineering, 2024, 67 (03) : 282 - 297
  • [9] High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO2/N2 and CH4/N2 separation
    Chen, Siang
    Wu, Wenling
    Niu, Zhaoyang
    Kong, Deqi
    Li, Wenbin
    Tang, Zhongli
    Zhang, Donghui
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 67 : 282 - 297
  • [10] Multicomponent adsorption of biogas compositions containing CO2, CH4 and N2 on Maxsorb and Cu-BTC using extended Langmuir and Doong-Yang models
    Gomez, Luis Fernando
    Zacharia, Renju
    Benard, Pierre
    Chahine, Richard
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2015, 21 (05): : 433 - 443