Kalman filtering with truncated normal state variables for Bayesian estimation of macroeconomic models

被引:4
|
作者
Dueker, Michael [1 ]
机构
[1] Fed Reserve Bank S Louis, St Louis, MO USA
关键词
Kalman filter; truncated normal; probit model; macroeconometric models;
D O I
10.1016/j.econlet.2006.03.040
中图分类号
F [经济];
学科分类号
02 ;
摘要
A pair of simple modifications-in the forecast error and forecast error variance-to the Kalman filter recursions makes possible the filtering of models in which one or more state variables is truncated normal and latent. Such recursions are broadly applicable to macroeconometric models, such as vector autoregressions and estimated dynamic stochastic general equilibrium models, that have one or more probit-type equation. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 50 条
  • [1] OPTIMAL ESTIMATION OF STATE VARIABLES FOR UNDERWATER VEHICLES BASED ON KALMAN FILTERING
    TAKENOUCHI, T
    OZAWA, Y
    NEC RESEARCH & DEVELOPMENT, 1986, (83): : 92 - 98
  • [2] Kalman filtering for TS fuzzy state estimation
    Noh, Sun Young
    Park, Jin Bae
    Joo, Young Hoon
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 1926 - +
  • [3] Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon
    Fang, Huazhen
    Tian, Ning
    Wang, Yebin
    Zhou, MengChu
    Haile, Mulugeta A.
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (02) : 401 - 417
  • [4] Nonlinear Bayesian Estimation:From Kalman Filtering to a Broader Horizon
    Huazhen Fang
    Ning Tian
    Yebin Wang
    Meng Chu Zhou
    Mulugeta A. Haile
    IEEE/CAA Journal of Automatica Sinica, 2018, 5 (02) : 401 - 417
  • [5] Online state and input force estimation for multibody models employing extended Kalman filtering
    Naets, Frank
    Pastorino, Roland
    Cuadrado, Javier
    Desmet, Wim
    MULTIBODY SYSTEM DYNAMICS, 2014, 32 (03) : 317 - 336
  • [6] Online state and input force estimation for multibody models employing extended Kalman filtering
    Frank Naets
    Roland Pastorino
    Javier Cuadrado
    Wim Desmet
    Multibody System Dynamics, 2014, 32 : 317 - 336
  • [7] Neural network-aided variational Bayesian adaptive cubature Kalman filtering for nonlinear state estimation
    Miao, Zhiyong
    Shi, Hongyang
    Zhang, Yi
    Xu, Fan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (10)
  • [8] An investigation of extended kalman filtering in the errors-in-variables framework - A joint state and parameter estimation approach
    Linden, Jens G.
    Vinsonneau, Benoit
    Burnham, Keith J.
    ICINCO 2007: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL SPSMC: SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL, 2007, : 47 - 53
  • [9] Enhanced state estimation using multiscale Kalman filtering
    Nounou, Mohamed N.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 1679 - 1684
  • [10] The study of joint input and state estimation with Kalman filtering
    Pan, Shuwen
    Su, Hongye
    Wang, Hong
    Chu, Jian
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2011, 33 (08) : 901 - 918