Components of Springer fibers for the exceptional groups G2 and F4

被引:0
|
作者
Samples, Brandon [1 ,2 ]
机构
[1] Georgia Coll, Milledgeville, GA 31061 USA
[2] State Univ, Dept Math, Milledgeville, GA 31061 USA
关键词
Springer fibers; Nilpotent orbits; Flag varieties; Exceptional groups;
D O I
10.1016/j.jalgebra.2013.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be the complex connected simply connected simple Lie group of type G(2) or F-4. Let K denote the fixed point subgroup relative to an involution of G that is lifted from a Cartan involution. This article gives a description of certain components of Springer fibers associated to closed K-orbits contained in the flag variety of G. These components allow us to describe certain multiplicity polynomials associated to discrete series representations of the real form G(2)(2) of G2 and the two real forms F-4(4) and F-4(-20) of F-4. The goals for this paper are motivated by the descriptions of Springer fiber components and the associated multiplicity polynomials for type SU(p, q) described in a paper of Barchini and Zierau. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:219 / 248
页数:30
相关论文
共 50 条
  • [1] Gradings on the exceptional Lie algebras F4 and G2 revisited
    Elduque, Alberto
    Kochetov, Mikhail
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (03) : 773 - 813
  • [2] F4, E6 and G2 exceptional gauge groups in the vacuum domain structure model
    Shahlaei, Amir
    Rafibakhsh, Shahnoosh
    PHYSICAL REVIEW D, 2018, 97 (05)
  • [3] Homotopy groups of the homogeneous spaces F4/G2, F4/Spin(9) and E6/F4
    Hirato, Y
    Kachi, H
    Mimura, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (01) : 16 - 19
  • [4] COMPACT QUANTUM GROUPS G2, F4 AND E8
    TIRABOSCHI, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (13): : 913 - 918
  • [5] Standard model of elementary particles and extensions using exceptional lie groups G2, F4 and E6
    da Rocha, R
    Vaz, J
    IX HADRON PHYSICS AND VII RELATIVISTIC ASPECTS OF NUCLEAR PHYSICS, 2004, 739 : 687 - 689
  • [6] Accelerated discovery of machine-learned symmetries: Deriving the exceptional Lie groups G2, F4 and E6
    Forestano, Roy T.
    Matchev, Konstantin T.
    Matcheva, Katia
    Roman, Alexander
    Unlu, Eyup B.
    Verner, Sarunas
    PHYSICS LETTERS B, 2023, 847
  • [7] Strange duality of Verlinde spaces for G2 and F4
    Mukhopadhyay, Swarnava
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 387 - 399
  • [8] Gradings on the real forms of the Albert algebra, of g2, and of f4
    Calderon Martin, A. J.
    Draper, C.
    Martin Gonzalez, C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [9] BPS states in N=2 supersymmetric G2 and F4 models
    Laamara, R. Ahl
    Mellal, O.
    Saidi, E. H.
    NUCLEAR PHYSICS B, 2017, 920 : 157 - 191
  • [10] Non-associative Frobenius algebras of type G2 and F4
    Desmet, Jari
    TRANSFORMATION GROUPS, 2023,