Analysis of a stochastic ratio-dependent predator-prey model driven by Levy noise

被引:17
|
作者
Bai, Ling [1 ]
Li, Jingshi [1 ]
Zhang, Kai [1 ]
Zhao, Wenju [2 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130061, Peoples R China
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
基金
中国国家自然科学基金;
关键词
Levy noise; Ito formula for Levy process; The strong number law of local martingale; Persistence; POPULATION-DYNAMICS; SYSTEM;
D O I
10.1016/j.amc.2013.12.187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a non-autonomous ratio-dependent predator-prey system driven by Levy noise. Firstly, we show the existence of global positive solution and stochastic boundedness. Secondly, the conditions of persistent in mean and extinction are established and we also give the asymptotic properties of the solution. Finally, we simulate the model to illustrate our main analytical results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:480 / 493
页数:14
相关论文
共 50 条
  • [1] Dynamical analysis of a stochastic ratio-dependent predator-prey system with Levy jumps
    Fan, Caifeng
    Xiong, Zuoliang
    Nie, Dandan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (02): : 169 - 177
  • [2] DYNAMICS OF A STOCHASTIC RATIO-DEPENDENT PREDATOR-PREY MODEL
    Nguyen Thi Hoai Linh
    Ta Viet Ton
    ANALYSIS AND APPLICATIONS, 2011, 9 (03) : 329 - 344
  • [3] QUALITATIVE ANALYSIS OF STOCHASTIC RATIO-DEPENDENT PREDATOR-PREY SYSTEMS
    Ji, Chunyan
    Jiang, Daqing
    Zhao, Yanan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (02): : 475 - 500
  • [4] Qualitative analysis of a stochastic ratio-dependent predator-prey system
    Ji, Chunyan
    Jiang, Daqing
    Li, Xiaoyue
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) : 1326 - 1341
  • [5] Parametric analysis of the ratio-dependent predator-prey model
    Berezovskaya, F
    Karev, G
    Arditi, R
    JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 43 (03) : 221 - 246
  • [6] Stability Analysis of a Ratio-Dependent Predator-Prey Model
    Yao, Pei
    Wang, Zuocheng
    Wang, Lingshu
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [7] Analysis on a Stochastic Two-Species Ratio-Dependent Predator-Prey Model
    Lv, Jingliang
    Wang, Ke
    Chen, Dongdong
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (02) : 403 - 418
  • [8] Analysis on a Stochastic Two-Species Ratio-Dependent Predator-Prey Model
    Jingliang Lv
    Ke Wang
    Dongdong Chen
    Methodology and Computing in Applied Probability, 2015, 17 : 403 - 418
  • [9] Analysis of Asymptotic and Transient Behaviors of Stochastic Ratio-Dependent Predator-Prey Model
    Liu, Wen
    Feng, Jianfeng
    MATHEMATICS, 2021, 9 (21)
  • [10] A ratio-dependent predator-prey model with disease in the prey
    Xiao, YN
    Chen, LS
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (2-3) : 397 - 414