Operators on anti-dual pairs: Generalized Schur complement

被引:2
|
作者
Tarcsay, Zsigmond [1 ]
Titkos, Tamas [2 ,3 ]
机构
[1] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[3] BBS Univ Appl Sci, Alkotmany U 9, H-1054 Budapest, Hungary
关键词
Positive operator; Anti-duality; Schur complement; Parallel sum; Parallel difference; Rigged Hilbert space; *-Algebra;
D O I
10.1016/j.laa.2020.02.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to develop the theory of Schur complementation in the context of operators acting on anti-dual pairs. As a byproduct, we obtain a natural generalization of the parallel sum and parallel difference, as well as the Lebesgue-type decomposition. To demonstrate how this operator approach works in application, we derive the corresponding results for operators acting on rigged Hilbert spaces, and for representable functionals of *-algebras. (C) 2020 The Authors. Published by Elsevier Inc.
引用
收藏
页码:125 / 143
页数:19
相关论文
共 50 条
  • [1] Operators on anti-dual pairs: Generalized Krein-von Neumann extension
    Tarcsay, Zsigmond
    Titkos, Tamas
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) : 1821 - 1838
  • [2] Operators on anti-dual pairs: Supremum and infimum of positive operators
    Tarcsay, Zsigmond
    Gode, Abel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [3] Operators on anti-dual pairs: Lebesgue decomposition of positive operators
    Tarcsay, Zsigmond
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (02)
  • [4] Operators on Anti-dual pairs: Self-adjoint Extensions and the Strong Parrott Theorem
    Tarcsay, Zsigmond
    Titkos, Tamas
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (04): : 813 - 824
  • [5] A GENERALIZED SCHUR COMPLEMENT FOR NONNEGATIVE OPERATORS ON LINEAR SPACES
    Friedrich, J.
    Guenther, M.
    Klotz, L.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (03): : 617 - 633
  • [6] GENERALIZED SCHUR COMPLEMENT
    CARLSON, DH
    HAYNSWOR.EV
    MARKHAM, TL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A67 - &
  • [7] Dual and anti-dual modes in dielectric spheres
    Zambrana-Puyalto, Xavier
    Vidal, Xavier
    Juan, Mathieu L.
    Molina-Terriza, Gabriel
    OPTICS EXPRESS, 2013, 21 (15): : 17520 - 17530
  • [8] Some remarks on generalized Schur pairs
    Mohammad Reza R. Moghaddam
    Ali Reza Salemkar
    Archiv der Mathematik, 1998, 71 : 12 - 16
  • [9] Some remarks on generalized Schur pairs
    Moghaddam, MRR
    Salemkar, AR
    ARCHIV DER MATHEMATIK, 1998, 71 (01) : 12 - 16
  • [10] Anti-Dual of Economic Coalitional TU Games
    Takayuki Oishi
    Mikio Nakayama
    The Japanese Economic Review, 2009, 60 : 560 - 566