The schwinger representation of a group: Concept and applications

被引:31
|
作者
Chaturvedi, S. [1 ]
Marmo, G.
Mukunda, N.
Simon, R.
Zampini, A.
机构
[1] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, I-80126 Naples, Italy
[4] Indian Inst Sci, Ctr High Energy Phys, Bangalore 560012, Karnataka, India
[5] Inst Math Sci, Madras 600113, Tamil Nadu, India
[6] SISSA, Math Phys Sector, I-34014 Trieste, Italy
关键词
Schwinger representation; Schwinger oscillator construction; compact semi-simple Lie groups; Majorana representation for spin; Wigner distribution; Wigner-Weyl isomorphism;
D O I
10.1142/S0129055X06002802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of the Schwinger Representation of a finite or compact simple Lie group is set up as a multiplicity-free direct sum of all the unitary irreducible representations of the group. This is abstracted from the properties of the Schwinger oscillator construction for SU(2), and its relevance in several quantum mechanical contexts is highlighted. The Schwinger representations for SU(2), SO(3) and SU(n) for all n are constructed via specific carrier spaces and group actions. In the SU(2) case, connections to the oscillator construction and to Majorana's theorem on pure states for any spin are worked out. The role of the Schwinger Representation in setting up the Wigner-Weyl isomorphism for quantum mechanics on a compact simple Lie group is brought out.
引用
收藏
页码:887 / 912
页数:26
相关论文
共 50 条
  • [1] Non-Standard Schwinger Fermionic Representation of Unitary Group
    Zhang, Fu-Lin
    Chen, Jing-Ling
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (02) : 414 - 421
  • [2] Non-Standard Schwinger Fermionic Representation of Unitary Group
    Fu-Lin Zhang
    Jing-Ling Chen
    International Journal of Theoretical Physics, 2009, 48
  • [3] Schwinger representation for the symmetric group: Two explicit constructions for the carrier space
    Chaturvedi, S.
    Marmo, G.
    Mukunda, N.
    Simon, R.
    PHYSICS LETTERS A, 2008, 372 (21) : 3763 - 3767
  • [4] AN EXPERIMENTAL EVIDENCE OF THE CONCEPT OF PROFESSIONAL REPRESENTATION THRU THE STUDY OF THE REPRESENTATION OF THE IDEAL GROUP
    Ratinaud, Pierre
    NUANCES-ESTUDOS SOBRE EDUCACAO, 2009, 16 (17): : 135 - 150
  • [5] SPECTRAL REPRESENTATION IN CONNECTION WITH SCHWINGER TERMS
    BURNEL, A
    PHYSICA, 1968, 38 (02): : 333 - &
  • [6] The Feynman-Schwinger representation in QCD
    Simonov, YA
    Tjon, JA
    ANNALS OF PHYSICS, 2002, 300 (01) : 54 - 87
  • [7] Schwinger representation approach to the Lipkin model
    Yamamura, Masatoshi
    Providencia, Constanca
    da Providencia, Joao
    Nishiyama, Seiya
    Cordeiro, Flavio
    Tsue, Yasuhiko
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40): : 12457 - 12468
  • [8] SCHWINGER BOSON REPRESENTATION FOR QUANTIZED ROTATOR
    YAMAMURA, M
    SUZUKI, T
    ICHIHASHI, H
    PROGRESS OF THEORETICAL PHYSICS, 1978, 60 (01): : 197 - 208
  • [10] Integral representation of fermionic Schwinger functions
    Hensel, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23): : 8191 - 8205