Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation

被引:1
|
作者
Fei, Jin-Xi [1 ]
Cao, Wei-Ping [1 ]
Ma, Zheng-Yi [2 ,3 ]
机构
[1] Lishui Univ, Dept Elect, Lishui 323000, Peoples R China
[2] Lishui Univ, Dept Math, Lishui 323000, Peoples R China
[3] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2017年 / 72卷 / 03期
关键词
Consistent Tanh Expansion Method; Interaction Solution; KdV Equation; Residual Symmetry; PARTIAL-DIFFERENTIAL-EQUATIONS; PAINLEVE PROPERTY; INTERNAL SOLITONS; WAVE SOLUTIONS; FAMILIES; MODELS; OCEAN;
D O I
10.1515/zna-2016-0339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The non-local residual symmetry for the classical Korteweg-de Vries equation is derived by the truncated Painleve analysis. This symmetry is first localised to the Lie point symmetry by introducing the auxiliary dependent variables. By using Lie's first theorem, we then obtain the finite transformation for the localised residual symmetry. Based on the consistent tanh expansion method, some exact interaction solutions among different non-linear excitations are explicitly presented finally. Some special interaction solutions are investigated both in analytical and graphical ways at the same time.
引用
收藏
页码:217 / 222
页数:6
相关论文
共 50 条
  • [1] Classical Solutions for the Generalized Korteweg-de Vries Equation
    Georgiev, Svetlin
    Boukarou, Aissa
    Hajjej, Zayd
    Zennir, Khaled
    AXIOMS, 2023, 12 (08)
  • [2] Residual symmetries of the modified Korteweg-de Vries equation and its localization
    Liu, Ping
    Li, Biao
    Yang, Jian-Rong
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2014, 12 (08): : 541 - 553
  • [3] Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation
    Chen, Junchao
    Zhu, Shundong
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 136 - 142
  • [4] Lump and Interaction solutions of a geophysical Korteweg-de Vries equation
    Rizvi, S. T. R.
    Seadawy, Aly R.
    Ashraf, F.
    Younis, M.
    Iqbal, H.
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2020, 19
  • [5] Nonlocal Symmetries, Explicit Solutions, and Wave Structures for the Korteweg-de Vries Equation
    Ma, Zheng-Yi
    Fei, Jin-Xi
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (08): : 735 - 740
  • [6] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
    胡恒春
    刘飞艳
    Chinese Physics B, 2020, (04) : 139 - 144
  • [7] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [8] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 2002, 28 : 235 - 236
  • [9] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [10] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)