Nonlinear Lie derivations of incidence algebras of finite rank

被引:5
|
作者
Yang, Yuping [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 09期
基金
中国国家自然科学基金;
关键词
Derivation; nonlinear Lie derivation; incidence algebra; JORDAN DERIVATIONS; AUTOMORPHISMS; INVOLUTIONS;
D O I
10.1080/03081087.2019.1635979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a finite preordered set, R a 2-torsion free commutative ring with unity and the incidence algebra of X over R. In this paper we prove that every nonlinear Lie derivation of is of the standard form. More explicitly, each nonlinear Lie derivation of is a sum of an inner derivation, a transitive induced derivation, an additive induced derivation and a central-valued map.
引用
收藏
页码:1665 / 1682
页数:18
相关论文
共 50 条
  • [1] NONLINEAR LIE DERIVATIONS OF INCIDENCE ALGEBRAS
    Yang, Yuping
    OPERATORS AND MATRICES, 2021, 15 (01): : 275 - 292
  • [2] Lie derivations of incidence algebras
    Zhang, Xian
    Khrypchenko, Mykola
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 513 : 69 - 83
  • [3] Lie higher derivations of incidence algebras
    Chen, Lizhen
    Xiao, Zhankui
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
  • [4] Lie triple derivations of incidence algebras
    Wang, Danni
    Xiao, Zhankui
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 1841 - 1852
  • [5] Lie higher derivations of incidence algebras
    Lizhen Chen
    Zhankui Xiao
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [6] Nonlinear Lie derivations of triangular algebras
    Yu, Weiyan
    Zhang, Jianhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2953 - 2960
  • [7] Nonlinear *-Lie derivations on unital algebras
    Jabeen, Aisha
    Ashraf, Mohammad
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 731 - 746
  • [8] NONLINEAR DERIVATIONS OF INCIDENCE ALGEBRAS
    Yang, Y.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 52 - 61
  • [9] Nonlinear derivations of incidence algebras
    Y. Yang
    Acta Mathematica Hungarica, 2020, 162 : 52 - 61
  • [10] Lie n-derivations of incidence algebras
    Xiao, Zhankui
    Yang, Yuping
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 105 - 118