Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

被引:100
|
作者
Hong, Seunghoon [1 ,2 ]
Oh, Junhyuk [2 ]
Lee, Honglak [2 ]
Han, Bohyung [1 ]
机构
[1] POSTECH, Dept Comp Sci & Engn, Pohang, South Korea
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR.2016.349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel weakly-supervised semantic segmentation algorithm based on Deep Convolutional Neural Network (DCNN). Contrary to existing weakly-supervised approaches, our algorithm exploits auxiliary segmentation annotations available for different categories to guide segmentations on images with only image-level class labels. To make segmentation knowledge transferrable across categories, we design a decoupled encoder-decoder architecture with attention model. In this architecture, the model generates spatial highlights of each category presented in images using an attention model, and subsequently performs binary segmentation for each highlighted region using decoder. Combining attention model, the decoder trained with segmentation annotations in different categories boosts accuracy of weakly-supervised semantic segmentation. The proposed algorithm demonstrates substantially improved performance compared to the state-of-the-art weakly-supervised techniques in PASCAL VOC 2012 dataset when our model is trained with the annotations in 60 exclusive categories in Microsoft COCO dataset.
引用
收藏
页码:3204 / 3212
页数:9
相关论文
共 50 条
  • [1] Combining Deep Semantic Segmentation Network and Graph Convolutional Neural Network for Semantic Segmentation of Remote Sensing Imagery
    Ouyang, Song
    Li, Yansheng
    REMOTE SENSING, 2021, 13 (01) : 1 - 22
  • [2] Learning Semantic Segmentation Score in Weakly Supervised Convolutional Neural Network
    Ikhwantri, Fariz
    Habibie, Novian
    Syulistyo, Arie Rachmad
    Aprinaldi
    Jatmiko, Wisnu
    2015 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, AND SYSTEMS (ICCCS), 2015, : 19 - 25
  • [3] On the contextual aspects of using deep convolutional neural network for semantic image segmentation
    Wang, Chunlai
    Mauch, Lukas
    Saxena, Mehul Manoj
    Yang, Bin
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)
  • [4] Weakly-Supervised Learning of a Deep Convolutional Neural Networks for Semantic Segmentation
    Feng, Yanqing
    Wang, Lunwen
    Zhang, Mengbo
    IEEE ACCESS, 2019, 7 : 91009 - 91018
  • [5] Deep Context Convolutional Neural Networks for Semantic Segmentation
    Yang, Wenbin
    Zhou, Quan
    Fan, Yawen
    Gao, Guangwei
    Wu, Songsong
    Ou, Weihua
    Lu, Huimin
    Cheng, Jie
    Latecki, Longin Jan
    COMPUTER VISION, PT I, 2017, 771 : 696 - 704
  • [6] Deep convolutional neural networks for semantic segmentation of cracks
    Wang, Jia-Ji
    Liu, Yu-Fei
    Nie, Xin
    Mo, Y. L.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (01):
  • [7] Semantic Segmentation of Remote Sensing Images Using Transfer Learning and Deep Convolutional Neural Network With Dense Connection
    Cui, Binge
    Chen, Xin
    Lu, Yan
    IEEE ACCESS, 2020, 8 (08): : 116744 - 116755
  • [8] CONVOLUTIONAL NEURAL NETWORK SCALING METHODS IN SEMANTIC SEGMENTATION
    Hmyria, I. O.
    Kravets, N. S.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2024, (02) : 52 - 60
  • [9] Convolutional neural network for smoke and fire semantic segmentation
    Frizzi, Sebastien
    Bouchouicha, Moez
    Ginoux, Jean-Marc
    Moreau, Eric
    Sayadi, Mounir
    IET IMAGE PROCESSING, 2021, 15 (03) : 634 - 647
  • [10] CrackDenseLinkNet: a deep convolutional neural network for semantic segmentation of cracks on concrete surface images
    Manjunatha, Preetham
    Masri, Sami F.
    Nakano, Aiichiro
    Wellford, Landon Carter
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (02): : 796 - 817