The Shift Bound for Abelian Codes and Generalizations of the Donoho-Stark Uncertainty Principle

被引:3
|
作者
Feng, Tao [1 ]
Hollmann, Henk D. L. [2 ]
Xiang, Qing [3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Philips IP&S, HTC 34, NL-5656 AE Eindhoven, Netherlands
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
Abelian code; Fourier transform; shift bound; Donoho-Stark uncertainty principle; NEAR-FACTORIZATIONS; FINITE; INEQUALITY;
D O I
10.1109/TIT.2019.2906301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a finite abelian group. If f : G -> C is a nonzero function with Fourier transform f, the Donoho-Stark uncertainty principle states that |supp( f)||supp((f) over cap)| >= |G|. The purpose of this paper is twofold. First, we present the shift bound for abelian codes with a streamlined proof. Second, we use the shifting technique to prove a generalization and a sharpening of the Donoho-Stark uncertainty principle. In particular, if f : G -> F is a non-zero function from G to a field F, and if f has a Fourier transform (f) over cap, the sharpened uncertainty principle states that |supp(f)|| supp((f) over cap)| >= | G|+| supp(f)|-| H(supp(f))|, where H(supp(f)) is the stabilizer of supp(f) in G.
引用
收藏
页码:4673 / 4682
页数:10
相关论文
共 16 条
  • [1] Two aspects of the Donoho-Stark uncertainty principle
    Boggiatto, Paolo
    Carypis, Evanthia
    Oliaro, Alessandro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1489 - 1503
  • [2] Variations on the Donoho-Stark Uncertainty Principle Estimate
    Taylor, Michael
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 492 - 509
  • [3] Donoho-Stark's uncertainty principle for the quaternion Fourier transform
    Abouelaz, A.
    Achak, A.
    Daher, R.
    Safouane, N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 587 - 597
  • [4] Spectrum of the finite Dunkl transform operator and Donoho-Stark uncertainty principle
    Ben Aouicha, Hichem
    Chettaoui, Chirine
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (02) : 123 - 143
  • [5] Donoho-Stark uncertainty principle associated to the index Whittaker wavelet transform
    Dades, Abdelaali
    Tyr, Othman
    Daher, Radouan
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (04)
  • [6] DONOHO-STARK UNCERTAINTY PRINCIPLE ASSOCIATED WITH A SINGULAR SECOND-ORDER DIFFERENTIAL OPERATOR
    Soltani, Fethi
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 4 (01): : 1 - 10
  • [7] Donoho-Stark's Uncertainty Principles in Real Clifford Algebras
    El Haoui, Youssef
    Fahlaoui, Said
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)
  • [8] Variations on the Donoho–Stark Uncertainty Principle Estimate
    Michael Taylor
    The Journal of Geometric Analysis, 2018, 28 : 492 - 509
  • [9] Donoho-Stark and Price uncertainty principles for a class of q-integral transforms with bounded kernels
    Castro, Luis P.
    Guerra, Rita C.
    FORUM MATHEMATICUM, 2024, 36 (05) : 1359 - 1381
  • [10] Donoho–Stark’s uncertainty principle for the quaternion Fourier transform
    A. Abouelaz
    A. Achak
    R. Daher
    N. Safouane
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 587 - 597