On tamely ramified pro- p-extensions over Zp-extensions of Q

被引:5
|
作者
Itoh, Tsuyoshi [1 ]
Mizusawa, Yasushi [2 ]
机构
[1] Chiba Inst Technol, Fac Social Syst Sci, Educ Ctr, Div Math, Narashino, Chiba 2750023, Japan
[2] Nagoya Inst Technol, Dept Math, Showa Ku, Nagoya, Aichi 4668555, Japan
关键词
IWASAWA INVARIANTS;
D O I
10.1017/S0305004113000637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime number p and a finite set S of prime numbers congruent to 1 modulo p, we consider the Galois group of the maximal pro-p-extension unramified outside S over the Z(p)-extension of the rational number field. In this paper, we classify all S such that the Galois group is a metacyclic pro-p group.
引用
收藏
页码:281 / 294
页数:14
相关论文
共 50 条