On tamely ramified pro- p-extensions over Zp-extensions of Q
被引:5
|
作者:
Itoh, Tsuyoshi
论文数: 0引用数: 0
h-index: 0
机构:
Chiba Inst Technol, Fac Social Syst Sci, Educ Ctr, Div Math, Narashino, Chiba 2750023, JapanChiba Inst Technol, Fac Social Syst Sci, Educ Ctr, Div Math, Narashino, Chiba 2750023, Japan
Itoh, Tsuyoshi
[1
]
论文数: 引用数:
h-index:
机构:
Mizusawa, Yasushi
[2
]
机构:
[1] Chiba Inst Technol, Fac Social Syst Sci, Educ Ctr, Div Math, Narashino, Chiba 2750023, Japan
[2] Nagoya Inst Technol, Dept Math, Showa Ku, Nagoya, Aichi 4668555, Japan
For an odd prime number p and a finite set S of prime numbers congruent to 1 modulo p, we consider the Galois group of the maximal pro-p-extension unramified outside S over the Z(p)-extension of the rational number field. In this paper, we classify all S such that the Galois group is a metacyclic pro-p group.
机构:
Sorbonne Univ, UMR 7586 CNRS Paris Diderot, Inst Math Jussieu Paris Rive Gauche, Paris, FranceUniv Barcelona, Dept Matemat & Informat, Barcelona, Spain