TONELLI PRINCIPLE: FINITE REDUCTION AND FIXED ENERGY MOLECULAR DYNAMICS TRAJECTORIES

被引:2
|
作者
Turco, A. [1 ]
Passerone, D. [2 ]
Cardin, F. [3 ]
机构
[1] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[2] EMPA Swiss Fed Labs Mat Testing & Res, CH-8600 Dubendorf, Switzerland
[3] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
来源
MULTISCALE MODELING & SIMULATION | 2009年 / 7卷 / 03期
关键词
Lagrangian mechanics; calculus of variations; molecular dynamics; rare events; PERIODIC-SOLUTIONS; TIME; PATH; ALGORITHM;
D O I
10.1137/080724319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a novel theoretical and practical alternative to the Maupertuis functional in the field of molecular dynamics: the Tonelli functional. Our aim is to adapt this technique to the study of rare events where the initial and the final states of a system are known, and we look for transition paths. We reach it with a rigorous mathematical development of the functional and an efficient numerical algorithm. We couple the Tonelli functional with an exact finite dimensional reduction, and we prove error estimates for its implementation. This is not far from a multiscale approach; indeed the reduction will help the study of the high frequencies of the systems: it can be seen as a magnifying glass for atomic trajectories. We test our techniques first on simple models in order to show the details and the main features of these new tools: an harmonic oscillator, a one dimensional double-well potential, the well-tested Mueller potential, and a short oscillatory trajectory of a 4-atom cluster are studied under different points of view. Then we pass to a more demanding test: the isomerization of a Lennard-Jones cluster of 38 interacting atoms.
引用
收藏
页码:1171 / 1191
页数:21
相关论文
共 50 条
  • [1] Tonelli principle: finite reduction and fixed energy molecular dynamics trajectories
    Turco, Alessandro
    Passerone, Daniele
    Cardin, Franco
    FRONTIERS OF FUNDAMENTAL AND COMPUTATIONAL PHYSICS, 2008, 1018 : 189 - +
  • [2] Dynamics of Two Bodies with Trajectories on a Fixed Straight Line with Regard for the Finite Speed of Gravity
    Slyusarchuk V.Y.
    Journal of Mathematical Sciences, 2023, 270 (2) : 353 - 384
  • [3] Bell-Evans-Polanyi principle for molecular dynamics trajectories and its implications for global optimization
    Roy, Shantanu
    Goedecker, Stefan
    Hellmann, Vladimir
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [4] On the least action principle -: Hamiltonian dynamics on fixed energy levels in the non-convex case
    Giambò, R
    Giannoni, F
    Piccione, P
    ADVANCED NONLINEAR STUDIES, 2006, 6 (02) : 255 - 267
  • [5] Optimization of finite-thrust trajectories with fixed angular distance
    Petukhov, Viacheslav
    Ivanyukhin, Alexey
    Popov, Garri
    Testoyedov, Nikolay
    Yoon, Sung Wook
    ACTA ASTRONAUTICA, 2022, 197 : 354 - 367
  • [6] Molecular dynamics - Fixed on fractals
    不详
    NATURE, 2005, 437 (7056) : 172 - 172
  • [7] Predictive compression of molecular dynamics trajectories
    Dvorak, Jan
    Manak, Martin
    Vasa, Libor
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2020, 96
  • [8] Nonadiabatic Molecular Dynamics Based on Trajectories
    de Carvalho, Felipe Franco
    Bouduban, Marine E. F.
    Curchod, Basile F. E.
    Tavernelli, Ivano
    ENTROPY, 2014, 16 (01) : 62 - 85
  • [9] THE ENVELOPES OF SOME FAMILIES OF FIXED-ENERGY TRAJECTORIES
    FRENCH, AP
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (09) : 805 - 811
  • [10] Extended Hamiltonian molecular dynamics: semiclassical trajectories with improved maintenance of zero point energy
    Shu, Yinan
    Dong, Sijia S.
    Parker, Kelsey A.
    Bao, Junwei L.
    Zhang, Linyao
    Truhlar, Donald G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (48) : 30209 - 30218