On the Asymptotics of Some Weierstrass Functions

被引:10
|
作者
Zajac, J. [1 ]
Korenkov, M. E. [2 ]
Kharkevych, Yu. I. [2 ]
机构
[1] State Sch Higher Educ Chem, Chelm, Poland
[2] L Ukrainka East European Natl Univ, Lutsk, Ukraine
关键词
Entire Function; Arbitrary Constant; Asymptotic Formula; Satisfying Condition; Convex Domain;
D O I
10.1007/s11253-015-1070-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For Weierstrass functions sigma(z) and zeta(z), we present the asymptotic formulas valid outside the efficiently constructed exceptional sets of discs that are much narrower than in the known asymptotic formulas.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 50 条
  • [1] On the Asymptotics of Some Weierstrass Functions
    J. Zając
    M. E. Korenkov
    Yu. I. Kharkevych
    Ukrainian Mathematical Journal, 2015, 67 : 154 - 158
  • [2] Functions of Weierstrass type and spectral asymptotics for iterated sets
    vandenBerg, M
    Levitin, M
    QUARTERLY JOURNAL OF MATHEMATICS, 1996, 47 (188): : 493 - 509
  • [3] On the Asymptotics and Distribution of Values of the Jacobi Theta Functions and the Estimate of the Type of the Weierstrass Sigma Functions
    Korenkov, Mykola
    Kharkevych, Yurii
    AXIOMS, 2022, 11 (01)
  • [4] On the asymptotics of some partial theta functions
    McIntosh, Richard J.
    RAMANUJAN JOURNAL, 2018, 45 (03): : 895 - 907
  • [5] On the asymptotics of some partial theta functions
    Richard J. McIntosh
    The Ramanujan Journal, 2018, 45 : 895 - 907
  • [6] Asymptotics of the Coefficients of Some Generating Functions
    T. V. Andreeva
    Y. Liu
    Moscow University Computational Mathematics and Cybernetics, 2025, 49 (1) : 1 - 8
  • [7] Some families of Weierstrass-type functions and their applications
    Chang, Chung-Hau
    Srivastava, H. M.
    Wu, Tsu-Chen
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (09) : 621 - 632
  • [8] Some new addition formulae for Weierstrass elliptic functions
    Eilbeck, J. Chris
    England, Matthew
    Onishi, Yoshihiro
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2171):
  • [9] ASYMPTOTICS AND ALGEBRAICITY OF SOME GENERATING-FUNCTIONS
    BECKNER, W
    REGEV, A
    ADVANCES IN MATHEMATICS, 1987, 65 (01) : 1 - 15
  • [10] Asymptotics for some fundamental q-functions
    Zhang, Ruiming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) : 285 - 292