Optical soliton perturbation with spatio-temporal dispersion in parabolic and dual-power law media by semi-inverse variational principle

被引:31
|
作者
Bhrawy, A. H. [1 ,2 ]
Alshaery, A. A. [3 ]
Hilal, E. M. [3 ]
Khan, Kaisar R. [4 ]
Mahmood, Mohammad F. [5 ]
Biswas, Anjan [1 ,6 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[3] King Abdulaziz Univ, Fac Sci Girls, Dept Math, Jeddah 21413, Saudi Arabia
[4] SUNY Canton, Canino Sch Engn Technol, Canton, NY 13617 USA
[5] Howard Univ, Dept Math, Washington, DC 20059 USA
[6] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
来源
OPTIK | 2014年 / 125卷 / 17期
关键词
Solitons; Integrability; Semi-inverse variational principle; EQUATION; KERR; FIELD;
D O I
10.1016/j.ijleo.2014.04.024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper studies the perturbed optical solitons with parabolic and dual-power law nonlinearities in presence of spatio-temporal dispersion. The semi-inverse variational principle is applied to extract an analytical 1-soliton solution to the governing equation. There are constraint conditions that naturally fall out for the existence of these solitons. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:4945 / 4950
页数:6
相关论文
共 50 条
  • [1] Optical soliton perturbation with parabolic and dual-power law nonlinearities by semi-inverse variational principle
    Biswas, Anjan
    Alqahtani, Rubayyi T.
    Abdelkawy, M. A.
    OPTIK, 2017, 147 : 82 - 87
  • [2] Resonant optical solitons with parabolic and dual-power laws by semi-inverse variational principle
    Biswas, Anjan
    Zhou, Qin
    Triki, Houria
    Ullah, Malik Zaka
    Asma, Mir
    Moshokoa, Seithuti P.
    Belic, Milivoj
    JOURNAL OF MODERN OPTICS, 2018, 65 (02) : 179 - 184
  • [3] Highly dispersive optical soliton perturbation with Kerr law by semi-inverse variational principle
    Kohl, Russell W.
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Khan, Salam
    Alshomrani, Ali S.
    Belic, Milivoj R.
    OPTIK, 2019, 199
  • [4] Optical soliton perturbation with parabolic–nonlocal combo nonlinearity: undetermined coefficients and semi-inverse variational principle
    Jose Vega-Guzman
    Anjan Biswas
    Mir Asma
    Aly R. Seadawy
    Mehmet Ekici
    Abdullah Khamis Alzahrani
    Milivoj R. Belic
    Journal of Optics, 2022, 51 : 22 - 28
  • [5] Cubic-quartic optical soliton perturbation by semi-inverse variational principle
    Kohl, Russell W.
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj R.
    OPTIK, 2019, 185 : 45 - 49
  • [6] Optical soliton perturbation with Kudryashov's equation by semi-inverse variational principle
    Biswas, Anjan
    Asma, Mir
    Guggilla, Padmaja
    Mullick, Lipika
    Moraru, Luminita
    Ekici, Mehmet
    Alzahrani, Abdullah K.
    Belic, Milivoj R.
    PHYSICS LETTERS A, 2020, 384 (33)
  • [7] Optical soliton perturbation with parabolic-nonlocal combo nonlinearity: undetermined coefficients and semi-inverse variational principle
    Vega-Guzman, Jose
    Biswas, Anjan
    Asma, Mir
    Seadawy, Aly R.
    Ekici, Mehmet
    Alzahrani, Abdullah Khamis
    Belic, Milivoj R.
    JOURNAL OF OPTICS-INDIA, 2022, 51 (01): : 22 - 28
  • [8] Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle
    Biswas, Anjan
    Zhou, Qin
    Ullah, Malik Zaka
    Triki, Houria
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2017, 143 : 131 - 134
  • [9] OPTICAL SOLITON PERTURBATION WITH QUADRATIC-CUBIC NONLINEARITY BY SEMI-INVERSE VARIATIONAL PRINCIPLE
    Asma, Mir
    Othman, W. A. M.
    Wong, B. R.
    Biswas, Anjan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (04): : 331 - 336
  • [10] Optical soliton perturbation with polynomial and triple-power laws of refractive index by semi-inverse variational principle
    Kohl, Russell W.
    Biswas, Anjan
    Zhou, Qin
    Ekici, Mehmet
    Alzahrani, Abdullah Kamis
    Belic, Milivoj R.
    CHAOS SOLITONS & FRACTALS, 2020, 135