Entire solutions of sublinear elliptic equations in anisotropic media

被引:14
|
作者
Dinu, Teodora-Liliana [1 ]
机构
[1] Fratii Buzesti Coll, Dept Math, Craiova 200352, Romania
关键词
sublinear elliptic equation; entire solution; maximum principle; anisotropic potential; Kato class;
D O I
10.1016/j.jmaa.2005.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear elliptic problem -Delta u = rho(x)f(u) in R-N (N >= 3), lim(vertical bar x vertical bar ->infinity) u(x) = l, where l >= 0 is a real number, rho(x) is a nonnegative potential belonging to a certain Kato class, and f (u) has a sublinear growth. We distinguish the cases l > 0 and l = 0 and prove existence and uniqueness results if the potential p(x) decays fast enough at infinity. Our arguments rely on comparison techniques and on a theorem of Brezis and Oswald for sublinear elliptic equations. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:382 / 392
页数:11
相关论文
共 50 条