Mendelian randomization (MR) uses genetic data to probe questions of causality in epidemiological research, by invoking the Instrumental Variable (IV) assumptions. In recent years, it has become commonplace to attempt MR analyses by synthesising summary data estimates of genetic association gleaned from large and independent study populations. This is referred to as two-sample summary data MR. Unfortunately, due to the sheer number of variants that can be easily included into summary data MR analyses, it is increasingly likely that some do not meet the IV assumptions due to pleiotropy. There is a pressing need to develop methods that can both detect and correct for pleiotropy, in order to preserve the validity of the MR approach in this context. In this paper, we aim to clarify how established methods of meta-regression and random effects modelling from mainstream meta-analysis are being adapted to perform this task. Specifically, we focus on two contrasting approaches: the Inverse Variance Weighted (IVW) method which assumes in its simplest form that all genetic variants are valid IVs, and the method of MR-Egger regression that allows all variants to violate the IV assumptions, albeit in a specific way. We investigate the ability of two popular random effects models to provide robustness to pleiotropy under the IVW approach, and propose statistics to quantify the relative goodness-of-fit of the IVW approach over MR-Egger regression. (C) 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd
机构:
Univ Bristol, MRC Integrat Epidemiol Unit, Oakfield House, Bristol BS8 2BN, Avon, England
Univ Bristol, Populat Hlth Sci, Bristol, Avon, EnglandUniv Bristol, MRC Integrat Epidemiol Unit, Oakfield House, Bristol BS8 2BN, Avon, England
Shapland, Chin Yang
Zhao, Qingyuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, EnglandUniv Bristol, MRC Integrat Epidemiol Unit, Oakfield House, Bristol BS8 2BN, Avon, England
机构:
Duke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, SingaporeDuke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, Singapore
Cheng, Qing
Yang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Duke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, SingaporeDuke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, Singapore
Yang, Yi
Shi, Xingjie
论文数: 0引用数: 0
h-index: 0
机构:
Duke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, Singapore
Nanjing Univ Finance & Econ, Dept Stat, Nanjing 210023, Peoples R ChinaDuke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, Singapore
Shi, Xingjie
Yeung, Kar-Fu
论文数: 0引用数: 0
h-index: 0
机构:
Duke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, SingaporeDuke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, Singapore
Yeung, Kar-Fu
Yang, Can
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaDuke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, Singapore
Yang, Can
Peng, Heng
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R ChinaDuke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, Singapore
Peng, Heng
Liu, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Duke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, SingaporeDuke NUS Med Sch, Ctr Quantitat Med Hlth Serv & Syst Res, Singapore 169857, Singapore